GEE中对S2 1C数据进行大气校正

文章详细介绍了如何在GoogleEarthEngine(GEE)平台上利用6S大气校正模型对哨兵2卫星数据进行处理,首先需配置GEE的本地Python环境,然后是6S模型的环境设置,通过这些步骤可以实现遥感图像的大气影响消除。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 如何对 Sentinel 卫星图像执行大气校正 #### 使用 gee-atmcorr-S2 进行大气校正 gee-atmcorr-S2 是一个基于 Google Earth Engine 的开源项目,专门用于对 Sentinel 2 卫星影像进行大气校正。通过集成 Py6S 库,此工具能够有效减少大气层对遥感图像的影响,从而提高地表反射率数据的准确性[^2]。 #### 大气校正的具体步骤 为了实现这一目标,gee-atmcorr-S2 提供了一个简便的工作流: 1. **加载 Sentinel-2 数据** 需要先从 GEE 中获取所需的 Sentinel-2 图像集合。这可以通过指定时间范围和地区来完成。 2. **设置参数并运行模型** 接下来配置 Py6S 参数,这些参数包括太阳天顶角、传感器高度等信息。之后调用 `run()` 函数启动计算过程。 3. **导出结果** 完成上述操作后即可得到经过大气校正后的高质量图像产品。 以下是 Python 示例代码展示如何使用 gee-atmcorr-S2 对 Sentinel-2 影像实施大气校正: ```python import ee from py6s import SixS, Atmosphere, Aeronet, Geometry def apply_atmospheric_correction(image): s = SixS() # 设置几何条件 geometry = image.geometry().centroid() latlon = geometry.coordinates().getInfo()[::-1] date = ee.Date(image.get('system:time_start')).format('yyyy-MM-dd').getInfo() s.geometry = Geometry.User() s.geometry.solar_z = float(ee.ImageCollection("NASA/POWER/GEO/MONTHLY/V1").filterDate(date).select(['allsky_solar_zenith']).mean().reduceRegion(**{ 'reducer':ee.Reducer.mean(), 'geometry':geometry, 'scale':5000}).values().get(0)) s.geometry.view_z = 0 # 设定其他必要参数... corrected_image = ... # 执行具体的大气校正逻辑 return corrected_image # 初始化 EE 和导入必要的库 ee.Initialize() # 获取感兴趣区域内的 S2 TOA 反射率数据集 collection = ee.ImageCollection('COPERNICUS/S2') \ .filterBounds(aoi) \ .map(lambda img: apply_atmospheric_correction(img)) print(collection.size()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python与遥感

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值