基于模型驱动的深度学习高光谱图像融合研究_孙杨霖

本文探讨了高光谱图像融合的三种主要方法:传统数学、变分和深度学习方法。深度学习方法包括输入级、特征级和模型级融合,其中模型级融合具有可解释性和鲁棒性。退化观察模型和光谱解混模型在融合过程中起关键作用,融合策略分为盲性和非盲性两种。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可以借鉴一下她的国内外现状研究部分,写得挺好的

目前的高光谱图像融合方法可以大致分为三类:传统数学方法(成分替代和多分辨率分析)、变分方法(贝叶斯、矩阵分析)以及基于深度学习(输入级、特征级和模型级融合)的方法。其中前两种方法也可以被统称为传统高光谱图像融合方法。

  • 成分替代法,把LRHSI投影到更高维的空间,分离空间信息和光谱信息,再用HRMSI的空间信息替代LRHSI的空间信息

  • 多分辨率分析法,对HRMSI进行空间滤波注入到LRHS的空间细节(拉普拉斯金字塔滤波)

  • 输入级融合,把HRMS和LRHS直接在光谱维度上串联当做输入,把目标HRHS当做标签进行训练。

  • 特征级融合,利用不同的分支网络提取一对图像中空间和光谱信息,最后再把这两者融合。特征级融合主要关注 HRMS 和 LRHS 分别带有的空间与光谱信息,因此网络多以分支形式出现。

  • 模型级融合,模型级融合通常以传统的数学方法作为根据,按照数学分析方法对融合问题进行建模,之后把对模型求解的算子转换为深度网络的结构。融合网络通常是对传统数学方法或是变分优化方法的网络式模拟,因此兼具很强的可解释性和鲁棒性。

  1. 高光谱图像观测模型:

X : H R H S I Y : L R H S I Z : H R M S I X:HRHSI\quad\quad\quad Y:LRHSI\quad\quad Z:HRMSI X:HRHSI

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python与遥感

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值