斯坦福大学吴庆明团队找到中国人喝酒脸红以及心脏病风险突变基因

小结:2023年1月25日,斯坦福大学吴庆明(Joseph C. Wu)团队在《Science》子刊《Science Translational Medicine》上发表了研究论文。该研究表明,导致喝酒后面部发红的ALDH2基因突变通过诱导内皮细胞功能障碍,从而增加冠状动脉疾病(CAD)风险。更重要的是,该研究还发现了一种已获得FDA批准上市的药物SGLT2抑制剂Empagliflozin(恩格列净,2型糖尿病药物)能够预防和治疗ALDH2基因突变相关内皮细胞功能障碍。

携带ALDH2基因突变的人在喝酒或饮用含酒精饮料时,会出现面部发红的症状。这是主要是因为,ALDH2基因突变会使乙醛脱氢酶2的活性大大降低,从而使得酒精的中间代谢产物乙醛的积累,进而导致面部发红等症状。

全世界有大约8%的人携带这种基因突变,其中主要是东亚人群,因此,喝酒脸红的现象有时也被称为“亚洲红”。除了导致喝酒脸红,之前的研究显示,携带这种基因突变的人患冠状动脉疾病(CAD) 的风险显着上升

2023年1月25日,斯坦福大学吴庆明(Joseph C. Wu)团队Science Translational Medicine杂志在线发表题为“SGLT2 inhibitor ameliorates endothelial dysfunction associated with the common ALDH2 alcohol flushing variant”的研究论文,该研究专注于阐明人类细胞中与ALDH2*2相关的EC功能障碍的分子和细胞机制,并确定缓解该遗传变异患者EC功能障碍的策略。这项研究结果表明ALDH2*2诱导EC功能障碍,SGLT2i可能被用作ALDH2*2携带者预防CAD的措施。

根据世界卫生组织,冠状动脉疾病(或CAD)是全球死亡的主要原因,估计每年造成900万人死亡。由于人口老龄化和缺乏有效预防和治疗CAD的创新策略,CAD的全球患病率正在上升。通过了解其生理机制和因果关系,针对具有遗传变异的CAD患者的精准医学有望成为更有效预防和治疗的新方法。

CAD是一种由多种遗传和环境因素相互作用引起的复杂疾病。通过全基因组关联研究(GWAS),已有数百个基因组位点与CAD相关。乙醛脱氢酶2 (ALDH2)基因中的单核苷酸多态性(SNP) ALDH2*2,也称为rs671,与正常的ALDH2*1等位基因相比,导致谷氨酸在504位取代赖氨酸(E504K),从而改变了底物对ALDH2催化活性位点的访问。

ALDH2是酒精代谢第二步中的关键酶。它在解毒有毒的醛,如氧化应激衍生的醛和酒精衍生的乙醛中至关重要。ALDH2*2携带者降低了ALDH2酶活性,这种缺乏与各种神经、心血管和皮肤疾病有关,即药物代谢异常。最近一项对12项病例-对照研究(3305例病例和5016例对照)的荟萃分析显示,ALDH2*2与CAD风险增加48%相关。

然而,迄今为止,ALDH2*2与CAD发病之间的潜在机制仍不清楚,这为预防和治疗ALDH2*2相关的CAD创造了障碍。此外,饮酒是冠心病的一个众所周知的危险因素。尽管在非亚洲人的研究中,乙醇不是导致CAD的主要因素,但它可能对亚洲血统的ALDH2*2携带者有重大影响。因此,确定ALDH2*2和饮酒对CAD的联合影响,以制定预防策略,降低ALDH2*2携带者的CAD风险是很重要的。

内皮细胞(ECs)是血管壁的重要组成部分,通过调节血管张力和结构在维持心血管稳态中发挥重要作用。EC功能障碍涉及多种人类心血管疾病。冠状动脉EC功能障碍发生在CAD发展的早期,可影响疾病的所有阶段,从发病到动脉粥样硬化性血栓并发症。ALDH2*2通过核因子κB (nuclear factor κB,NF-κB)、c-Jun和丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路增加炎症与EC功能障碍相关;通过二甲基精氨酸二甲胺水解酶-1 (dimethylarginine dimethylaminohydrolase-1,DDAH1)和不对称二甲基精氨酸(asymmetric dimethylarginine,ADMA)途径减少一氧化氮(NO)的产生,以及通过活性氧(ROS)和有毒醛如4-羟基壬烯醛(4-hydroxynonenal,4-HNE)增加氧化损伤。然而,ALDH2*2引起EC功能障碍的具体机制尚不清楚。

在这项研究中,吴庆明团队利用内皮功能的临床评估显示,携带ALDH2*2的人类参与者在轻度饮酒后表现出血管舒张受损。利用人诱导的多能干细胞来源的ECs (induced pluripotent stem cell–derived ECs, iPSC-ECs)和CRISPR-Cas9校正的ALDH2*2 iPSC-ECs,研究在体外模拟了ALDH2*2诱导的EC功能障碍,结果显示氧化应激和炎症标志物增加,一氧化氮(nitric oxide,NO)产生和管形成能力下降,乙醇暴露进一步加剧了这一情况。随后发现钠-葡萄糖共转运蛋白2抑制剂(sodium-glucose cotransporter 2 inhibitors, SGLT2i),如empagliflozin缓解了ALDH2*2相关的EC功能障碍。

图1. ALDH2*2与冠状动脉疾病(CAD)密切相关,并诱导内皮功能障碍。

通过对ALDH2*2敲入小鼠的研究进一步证明,empagliflozin可在体内减弱ALDH2*2介导的血管功能障碍。在机制上,empagliflozin抑制Na+/H+-交换器1 (Na+/H+-exchanger 1, NHE-1),激活AKT激酶和内皮NO合成酶(endothelial NO synthase, eNOS)通路,改善ALDH2*2诱导的EC功能障碍。

图2. Empagliflozin通过NHE-1/AKT/eNOS通路改善ALDH2*2相关内皮功能障碍。 

总的来说,这项研究发现即使少量饮酒也会损害ALDH2*2等位基因人类参与者的内皮功能。Empagliflozin通过抑制NHE-1活性和恢复AKT和eNOS信号,在体外和小鼠实验中改善了这种功能障碍。鉴于内皮在血管功能中的重要作用,这些结果表明,ALDH2*2基因突变诱导了内皮细胞功能障碍,从而增加了冠状动脉疾病(CAD)风险,而SLGT2抑制剂(SGLT2i)可以预防和缓解这种内皮细胞功能障碍。如果这类药物在人类身上起到类似的作用,那么它们很可能被用于降低ALDH2基因突变携带者患冠状动脉疾病(CAD)的风险。

吴博士是斯坦福大学教授,自2013年以来担任斯坦福心血管研究所所长,是全球心脏病学领域论文被引用次数最多的学者之一,在 Nature、Cell、Science,及 Nature Medicine、Science Translational Medicine、Cell Stem Cell、PNAS、Circulation、JACC、EHJ 等等级学术期刊发表多篇学术论文。

 吴庆明博士(Dr. Joseph C. Wu)

 

内容概要:本文深入浅出地介绍了用例图的概念、构成元素及其在软件开发中的重要作用。用例图作为一种描述系统功能的视图,是UML的重要组成部分,它通过参与者、用例、边界及关系清晰展示了系统的功能需求。文章详细解释了参与者(外部实体)、用例(功能需求或用户场景)、系统边界和关系(关联、包含、扩展、泛化)的定义和作用。用例图不仅有助于获取精准需求,还能指导测试和系统设计,确保开发过程有序高效。通过实际案例,如电商系统、打车软件等,文章生动地展示了用例图的应用场景,帮助读者更好地理解其在软件开发各阶段的作用。 适合群:适合软件开发员、项目经理、需求分析师以及所有参与软件开发流程的相关员,尤其是初学者和有一定经验的技术员。 使用场景及目标:① 在需求分析阶段,帮助团队梳理用户需求,确保系统功能确;② 在系统设计阶段,为架构师和开发员提供功能模块划分和接口设计的依据;③ 在测试阶段,为测试员提供详细的测试用例设计参考;④ 提高团队沟通效率,确保各方对系统功能达成一致理解。 其他说:本文通过丰富的实例和详细的解释,帮助读者掌握用例图的绘制方法和应用技巧,建议读者在实际项目中多加练习,结合具体业务场景灵活运用用例图,以提升软件开发的质量和效率。
数据集介绍:自动驾驶道路多目标检测数据集 数据集名称:自动驾驶道路多目标检测数据集 图片数量: - 训练集:2,447张图片 - 验证集:1,121张图片 - 测试集:1,126张图片 总计:4,694张道路场景图片 分类类别: 1. 坑洼道路:路面凹陷区域检测,用于车辆避障决策 2. 停止标志:交通禁令标志识别,支持车辆制动逻辑 3. 自行车:非机动车目标检测 4. 谨慎标志:预警类交通标识识别 5. 道路区域:可行驶区域划分 6. 路面坑洞:小型障碍物检测 7. 前进指示:交通引导标志识别 8. 摩托车:二轮机动车辆检测 9. 行:行目标识别与追踪 10. 车牌:车辆身份标识提取 11. 卡车:大型货运车辆检测 标注格式: YOLO格式标注,包含目标边界框与类别标签,支持主流检测框架直接调用。 自动驾驶系统开发: 训练车辆感知模型,实现道路障碍物、交通标志、行等多目标实时检测。 道路安全预警系统: 集成至ADAS系统,提供坑洞预警、行碰撞预警等功能。 交通流量分析: 通过车辆类型检测统计道路货运/客运比例。 算法研究: 支持YOLO系列模型优化,适用于复杂道路场景下的检测鲁棒性研究。 场景覆盖全面: 包含11类道路核心要素,涵盖车辆、行、交通标志、路面异常四维检测目标。 标注专业化: YOLO格式标注经多轮质检,边界框定位精准,类别标注准确率达98.6%。 任务适配灵活: 同时支持目标检测、可行驶区域分割、特殊标志识别等多任务模型训练。 数据分布合理: 严格按6:3:1划分训练/验证/测试集,包含昼夜、多种天气条件下的道路场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值