Prime Problem and Dual Problem

Prime Promblem and Dual Problem

recommend textbook:
Convex Optimization Stepthen Boyd
Nonlinear Programming

Prime Problem

{ m i n i m i z e   f ( ω ) s . t . { g i ( ω ) ≤ 0 ( i = 1 ∼ K ) h i ( ω ) = 0 ( i = 1 ∼ N ) \left\{\begin{array}{l} minimize\ f(\boldsymbol\omega)\\ s.t.\left\{\begin{array}{l} g_i(\boldsymbol\omega)\leq0(i=1\sim K)\\ h_i(\boldsymbol\omega) = 0 (i=1\sim N) \end{array}\right. \end{array}\right. minimize f(ω)s.t.{gi(ω)0(i=1K)hi(ω)=0(i=1N)

Dual Problem

{ Θ ( α , β ) = min ⁡ a l l   ω { L ( ω , α , β ) } s . t .   α i ≥ 0 L ( ω , α , β ) = f ( ω ) + ∑ i = 1 K α i g i ( ω ) + ∑ i = 1 M β i h i ( ω ) L ( ω , α , β ) = f ( ω ) + α T g ( ω ) + β T h ( ω )   ( v e c t o r i z e ) \left\{\begin{array}{l} \Theta(\boldsymbol\alpha, \boldsymbol\beta) = \min\limits_{all \ ω}\{L(\boldsymbol\omega, \boldsymbol\alpha, \boldsymbol\beta)\}\\ s.t. \ \boldsymbol\alpha_i \geq0 \end{array}\right.\\ L(\boldsymbol\omega,\boldsymbol\alpha, \boldsymbol\beta) = f(\boldsymbol\omega)+\sum\limits_{i=1}^{K}\boldsymbol\alpha_ig_i(\boldsymbol\omega)+\sum\limits_{i=1}^{M}\boldsymbol\beta_ih_i(\boldsymbol\omega)\\ L(\boldsymbol\omega,\boldsymbol\alpha, \boldsymbol\beta) = f(\boldsymbol\omega)+\boldsymbol\alpha^Tg(\boldsymbol\omega)+\boldsymbol\beta^Th(\boldsymbol\omega) \ (vectorize) {Θ(α,β)=all ωmin{L(ω,α,β)}s.t. αi0L(ω,α,β)=f(ω)+i=1Kαigi(ω)+i=1Mβihi(ω)L(ω,α,β)=f(ω)+αTg(ω)+βTh(ω) (vectorize)
Theorme: if ω ∗ \boldsymbol\omega^* ω is the solution of the prime problem and α ∗ , β ∗ \boldsymbol\alpha^*, \boldsymbol\beta^* α,β is the solution of the dual problem. Then: f ( ω ∗ ) ≥ Θ ( α ∗ , β ∗ ) f(\boldsymbol\omega^*) \geq \Theta(\boldsymbol\alpha^*, \boldsymbol\beta^*) f(ω)Θ(α,β)
Prove:
ω ∗ \boldsymbol\omega^* ω satisfies prime problem and α ∗ , β ∗ \boldsymbol\alpha^*,\boldsymbol\beta^* α,β satisfy dual problem
L ( ω ∗ , α ∗ , β ∗ ) = f ( ω ∗ ) + ∑ i = 1 K α i ∗ ≥ 0 g ( ω ∗ ) ≤ 0 + ∑ i = 1 N β i h ( ω ) = 0 L(\boldsymbol\omega^*,\boldsymbol\alpha^*, \boldsymbol\beta^*) = f(\boldsymbol\omega^*)+\sum\limits_{i=1}^K\mathop{\boldsymbol\alpha_i^*}\limits_{\geq0}\mathop{g(\boldsymbol\omega^*)}\limits_{\leq0} +\sum\limits_{i=1}^N\boldsymbol\beta_i\mathop{h(\boldsymbol\omega)}\limits_{=0} L(ω,α,β)=f(ω)+i=1K0αi0g(ω)+i=1Nβi=0h(ω)
L ( ω ∗ , α ∗ , β ∗ ) ≤ f ( ω ∗ ) L(\boldsymbol\omega^*,\boldsymbol\alpha^*, \boldsymbol\beta^*) \leq f(\boldsymbol\omega^*) L(ω,α,β)f(ω)
it is easy to prove that:
Θ ( α ∗ , β ∗ ) ≤ L ( ω ∗ , α ∗ , β ∗ ) \Theta(\boldsymbol\alpha^*, \boldsymbol\beta^*)\leq L(\boldsymbol\omega^*,\boldsymbol\alpha^*, \boldsymbol\beta^*) Θ(α,β)L(ω,α,β)
f ( ω ∗ ) ≥ Θ ( α ∗ , β ∗ ) f(\boldsymbol\omega^*) \geq \Theta(\boldsymbol\alpha^*, \boldsymbol\beta^*) f(ω)Θ(α,β)

Define the distance between prime problem and dual problem Duality Gap G = f ( ω ∗ ) − Θ ( α ∗ , β ∗ ) ≥ 0 G = f(\boldsymbol\omega^*) - \Theta(\boldsymbol\alpha^*, \boldsymbol\beta^*) \geq0 G=f(ω)Θ(α,β)0. In certain conditions, G = 0.

Strong Duality Therome(I won’t prove it here)
If f(ω) is a convex function and g ( ω ) = A ω + b , h ( ω ) = C ω + d g(\omega)=A\omega+b, h(\omega) = C\omega+d g(ω)=Aω+b,h(ω)=Cω+d, then G = 0.

Suppose we have already proved strong duality therome, then f ( ω ∗ ) = Θ ( α ∗ , β ∗ ) f(\boldsymbol\omega^*)=\Theta(\boldsymbol\alpha^*, \boldsymbol\beta^*) f(ω)=Θ(α,β):
ω ∗ = ω ,   Θ ( α ∗ , β ∗ ) = L ( ω ∗ , α ∗ , β ∗ ) \omega^* = \omega,\ \Theta(\boldsymbol\alpha^*, \boldsymbol\beta^*)=L(\boldsymbol\omega^*,\boldsymbol\alpha^*, \boldsymbol\beta^*) ω=ω, Θ(α,β)=L(ω,α,β)
∑ i = 1 K α i ∗ g i ( ω ∗ ) = 0 ,   ∀ i = 1 ∼ K ,   α i ∗ = 0   o r   g i ∗ ( ω ∗ ) = 0 \sum\limits_{i=1}^{K}\alpha_i^*g_i(\omega^*) = 0, \ \forall i=1\sim K, \ \alpha_i^*=0 \ or \ g_i^*(\omega^*) = 0 i=1Kαigi(ω)=0, i=1K, αi=0 or gi(ω)=0
② is very important, it is also called KKT condition

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值