Gaussian Mixture Model 高斯混合模型 GMM

Gaussian Mixture Model 高斯混合模型 GMM


在这里插入图片描述

Gaussian mixture model is a combine of multiple Gaussian models. These Gaussian models mixture according to ‘weight’ π \pi π. The picture is a mixture of two models.


GMM

{ P ( X ∣ c ) = ∑ k = 1 K π k N ( x ( n ) ∣ μ k , Σ k ) N ( x ( n ) ∣ μ k , Σ k ) = 1 ( 2 π ) d 2 ∣ Σ k ∣ 1 2 e x p [ − 1 2 ( x ( n ) − μ k ) T Σ − 1 ( x ( n ) − μ k ) ] ∑ k = 1 K π k = 1 \left\{\begin{array}{l} P(X|c) = \sum\limits_{k=1}^K\pi_kN(x^{(n)}|\mu_k, \Sigma_k) \\ N(x^{(n)}|\mu_k, \Sigma_k) = \frac{1}{(2\pi)^{\frac d2}|\Sigma_k|^{\frac12}}exp[-\frac12(x^{(n)}-\mu_k)^T\Sigma^{-1}(x^{(n)}-\mu_k)] \\ \sum\limits_{k=1}^K \pi_k= 1 \end{array}\right. P(Xc)=k=1KπkN(x(n)μk,Σk)N(x(n)μk,Σk)=(2π)2dΣk211exp[21(x(n)μk)TΣ1(x(n)μk)]k=1Kπk=1

π k \pi_k πk – the probability of one example belongs to the k t h k^{th} kth Gaussian model/the weight of k t h k^{th} kth model in the mixture model

Attention! GMM is not a convex function and it has local optima(k local optima). What shall we do?
Strategies:
(i) gradient descent
(ii) heuristic algorithm including Simulated Annealing, Evolutionary Algorithms, etc (People hardly use these algorithms nowadays)
(iii)EM algorithm Today’s superstar

EM Algorithm for GMM

general EM Algorithm

Pros and cons

Cons:

  1. EM algorithm is not a general algorithm dealing with non-convex problem.

Pros:

  1. No hyper-parameters
  2. Simple coding work
  3. Theoretically graceful

EM for GMM

γ n k \gamma_{nk} γnk – the probability of x ( n ) x^{(n)} x(n) belongs to k t h k^{th} kth model
N k N_k Nk – the expectation of #examples belong to k t h k^{th} kth model

r a n d o m i z e { π k , μ k , Σ k } k = 1 ∼ K w h i l e ( ! c o n v e r g e ) {          E − s t e p :                    γ n k = π k N ( x n ∣ μ k , Σ k ) ∑ k = 1 K N ( x n ∣ μ k , Σ k )          M − s t e p :                    N k = ∑ k = 1 K γ n k                  f o r ( k   m o d e l s )                  {                          π k ( n e w ) = N k N                          μ k ( n e w ) = 1 N k ∑ n = 1 N γ n k x ( n )                          Σ k ( n e w ) = 1 N k ∑ n = 1 N γ n k [ x ( n ) − μ k ( n e w ) ] [ x ( n ) − μ k ( n e w ) ] T                  { } randomize \{\pi_k,\mu_k,\Sigma_k\}_{k=1\sim K} \\ while (!converge) \\ \{ \\ \ \ \ \ \ \ \ \ E-step: \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \gamma_{nk} = \frac{\pi_kN(x_n|\mu_k, \Sigma_k)}{\sum\limits_{k=1}^KN(x_n|\mu_k, \Sigma_k)} \\ \ \ \ \ \ \ \ \ M-step: \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ N_k= \sum\limits_{k=1}^K\gamma_{nk} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ for(k \ models) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \{ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \pi_k^{(new)}=\frac{N_k}{N} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mu_k^{(new)} = \frac{1}{N_k}\sum\limits_{n=1}^N\gamma_{nk}x^{(n)} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \Sigma_k^{(new)} = \frac{1}{N_k}\sum\limits_{n=1}^N\gamma_{nk}[x^{(n)}-\mu_k^{(new)}] [x^{(n)}-\mu_k^{(new)}] ^T \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \{ \\ \} randomize{πk,μk,Σk}k=1Kwhile(!converge){        Estep:                 γnk=k=1KN(xnμk,Σk)πkN(xnμk,Σk)        Mstep:                 Nk=k=1Kγnk                for(k models)                {                        πk(new)=NNk                        μk(new)=Nk1n=1Nγnkx(n)                        Σk(new)=Nk1n=1Nγnk[x(n)μk(new)][x(n)μk(new)]T                {}
We use soft discrimination in this application of EM algorithm, which means we will compute the probability of each examples belongs to all models. In other applictions, take K-Means clustering algorithm for example, we use winner-takes-all strategy.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值