奇异值分解 Singular Value Decomposition

奇异值分解 Singular Value Decomposition


现在看前一段时间写的博客觉得好尬,有小错误不说,有些地方根本理解不到位,有机会再改吧(下次一定.jpg)

奇异值分解的定义与性质

定义与定理

A = U Σ V T A = U\Sigma V^T A=UΣVT
A是任意矩阵( m × n m\times n m×n),连方阵都不要求 。
U U U是正交矩阵orthogonal matrix( m × m m\times m m×m),列向量被称为左奇异向量
V V V是正交矩阵orthogonal matrix( n × n n\times n n×n),列向量被称为右奇异向量
Σ \Sigma Σ是矩形对角矩阵rectangular diagonal matrix( m × n m\times n m×n),所有元素非负,且按照降序排列 Σ = d i a g ( σ 1 , σ 2 , . . . , σ p ) \Sigma = diag(\sigma_1, \sigma_2,...,\sigma_p) Σ=diag(σ1,σ2,...,σp)
σ \sigma σ为奇异值

奇异值分解定理:任意矩阵A一定存在奇异值分解

紧奇异值分解和截断奇异值分解

A = U Σ V T A = U\Sigma V^T A=UΣVT被称为A的完全奇异值分解full SVD, 紧奇异值分解compact SVD是与原始矩阵等秩的奇异值分解;截断奇异值分解truuncate SVD是比原始矩阵低秩的奇异值分解

A = U Σ V T A = U\Sigma V^T A=UΣVT为完全奇异值分解
A = U r Σ r V r T A = U_r\Sigma_r V_r^T A=UrΣrVrT 为紧奇异值分解, U r U_r Ur U U U的前r列, V r V_r Vr V V V的前r列, Σ r \Sigma_r Σr Σ \Sigma Σ的前r个对角线元素, Σ r \Sigma_r Σr的秩与原始矩阵的秩相等。
r为A的秩
A = U k Σ k V k T A = U_k\Sigma_k V_k^T A=UkΣkVkT 为截断奇异值分解, U k U_k Uk U U U的前k列, V k V_k Vk V V V的前k列, Σ k \Sigma_k Σk Σ \Sigma Σ的前k个对角线元素, Σ k \Sigma_k Σk的秩与原始矩阵的秩相等。
k<r

实际应用中提到奇异值分解一般指截断奇异值分解

几何解释

U是坐标系的旋转或者反射变换,Σ是坐标系的放缩变换,V是坐标系的旋转或者反射变换在这里插入图片描述

主要性质

(这一部分有些不太懂的,回头再看)

  1. A T A A^TA ATA A A T AA^T AAT一定存在特征分解,V的列向量是 A T A A^TA ATA的特征向量,U的列向量是 A A T AA^T AAT的特征向量,Σ的奇异值是 A T A A^TA ATA A A T AA^T AAT特征值的平方根
  2. A T u j = σ j v j       j = 1 , 2 , . . , n A T u j = 0         j = n + 1 , n + 2 , . . . , m A^Tu_j=\sigma_jv_j\ \ \ \ \ j=1,2,..,n \\ A^Tu_j=0 \ \ \ \ \ \ \ j=n+1,n+2,...,m ATuj=σjvj     j=1,2,..,nATuj=0       j=n+1,n+2,...,m
  3. 奇异值分解中,Σ是唯一的,U和V不是唯一的
  4. rank(A) = rank( Σ \Sigma Σ) = # σ i ( σ i > 0 ) \sigma_i(\sigma_i>0) σi(σi>0) = r
  5. (没看懂)

奇异值分解的计算

A T A A^TA ATA的特征向量为V的列向量;Σ: A T A A^TA ATA的特征值开根号,降序排列,放到对角线上,其他地方补0;求正奇异值对应的左奇异值,求扩充的 A T A^T AT的标准正交基,构成U的列。

奇异值分解和矩阵近似

弗罗贝尼乌斯范数Frobenius norm

∣ ∣ A ∣ ∣ F = ( ∑ i = 1 m ∑ j = 1 n ( a i j ) 2 ) 1 2 ||A||_F=(\sum\limits_{i=1}^m\sum\limits_{j=1}^n(a_{ij})^2)^\frac12 AF=(i=1mj=1n(aij)2)21
(所有元素的平方和开根号)

定理: ∣ ∣ A ∣ ∣ F = ∣ ∣ Σ ∣ ∣ F = ( σ 1 2 + σ 2 2 + . . . + σ n 2 ) 1 2 ||A||_F=||\Sigma||_F=(\sigma_1^2+\sigma_2^2+...+\sigma_n^2)^\frac12 AF=ΣF=(σ12+σ22+...+σn2)21

矩阵的最优近似

奇异值分解是在平方损失(即弗罗贝尼乌斯范数)意义下对矩阵的最优近似,即数据压缩
r a n k ( A ) = r , A = U Σ V T , M rank(A) = r, A=U\Sigma V^T,M rank(A)=r,A=UΣVT,M为所有秩不超过k( k ≤ r k\leq r kr)的矩阵的集合,一定存在 ∣ ∣ A X ∣ ∣ F = min ⁡ S ∈ M ∣ ∣ A − S ∣ ∣ F ||A_X||_F=\min\limits_{S\in M}||A-S||_F AXF=SMminASF,且 ∣ ∣ A − X ∣ ∣ F = ( σ k + 1 2 + σ k + 2 2 + . . . + σ n 2 ) 1 2 ||A-X||_F=(\sigma_{k+1}^2+\sigma_{k+2}^2+...+\sigma_n^2)^\frac12 AXF=(σk+12+σk+22+...+σn2)21。特别的,当r=k时, A ′ = U Σ ′ V T A'=U\Sigma 'V^T A=UΣVT是达到最优值的矩阵
紧奇异值分解是Frobenius norm意义下的无损压缩
截断奇异值分解是Frobenius norm意义下的有损压缩,k常常远小于r,由于σ递减很快,所以截断奇异值分解也可以有较好的近似

矩阵的外积展开式

U Σ = [ σ 1 u 1    σ 2 u 2     . . .    σ n u n ] V T = [ v 1 T     v 2 T     . . .     v n T ] T A = σ 1 u 1 v 1 T + σ 2 u 2 v 2 T + . . . + σ n u n v n T A k = σ 1 u 1 v 1 T + σ 2 u 2 v 2 T + . . . + σ k u k v k T U\Sigma = [\sigma_1u_1 \ \ \sigma_2u_2 \ \ \ ... \ \ \sigma_nu_n] \\ V^T = [v_1^T \ \ \ v_2^T \ \ \ ... \ \ \ v_n^T]^T \\ A = \sigma_1u_1v_1^T + \sigma_2u_2v_2^T + ... + \sigma_nu_nv_n^T \\ A_k = \sigma_1u_1v_1^T + \sigma_2u_2v_2^T + ... + \sigma_ku_kv_k^T UΣ=[σ1u1  σ2u2   ...  σnun]VT=[v1T   v2T   ...   vnT]TA=σ1u1v1T+σ2u2v2T+...+σnunvnTAk=σ1u1v1T+σ2u2v2T+...+σkukvkT
A k A_k Ak即为A的截断奇异值分解,也是秩为k的最优近似。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值