验证利用numpy和sklearn方法进行标准化的结果是否一致

本文介绍了数据预处理中的标准规范化方法,包括标准化公式、使用`numpy`库的`np.mean`和`np.std`函数进行计算,以及利用`sklearn.preprocessing.StandardScaler()`进行数据标准化。通过这三个步骤,确保数据的均值为0,标准差为1,从而统一不同特征的尺度。
摘要由CSDN通过智能技术生成

1 标准化公式

( S a m p l e − m e a n ) s t d \frac{(Sample - mean)}{std} std(Samplemean)

计算时对每个属性/每列分别进行

Sample是一个(n_samples, n_features) 的数组,行代表有几组样本,列表示属性特征

2 利用np.mean,np.std进行计算

对其中一列属性进行计算并对比:

(Sample[:,0]-np.mean(Sample[:,0]))/np.std(Sample[:,0])

在这里插入图片描述

3 利用preprocessing.StandardScaler()进行计算

scaler =  preprocessing.StandardScaler().fit(Sample)
Sample_scaled = scaler.transform(Sample)  #标准化后的数据
print(Sample_scaled[:,0])

在这里插入图片描述
结果是一致的!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值