好的,下面是实现的代码和步骤:
1. 定义函数,输入参数为已知的两个点坐标和待求的横坐标值。
```python
def interpolate(x1, y1, x2, y2, x):
y = y1 + (y2-y1)/(x2-x1) * (x-x1)
return y
```
2. 创建数据集,包括已知的两个点和待求的横坐标值。
```python
import matplotlib.pyplot as plt
x1 = 1
y1 = 2
x2 = 4
y2 = 5
x = 2.5
```
3. 计算待求点的函数值。
```python
y = interpolate(x1, y1, x2, y2, x)
print("函数值为:", y)
```
4. 绘制插值多项式函数的曲线。
```python
import numpy as np
# 生成横坐标数组
x_values = np.linspace(x1, x2, 100)
# 生成插值多项式函数的纵坐标数组
y_values = []
for i in x_values:
y_values.append(interpolate(x1, y1, x2, y2, i))
# 绘制曲线
plt.plot(x_values, y_values, label="interpolation curve")
plt.scatter([x1, x2], [y1, y2], label="known points")
plt.scatter(x, y, label="interpolated point")
plt.legend()
plt.show()
```
完整代码如下:
```python
import numpy as np
import matplotlib.pyplot as plt
def interpolate(x1, y1, x2, y2, x):
y = y1 + (y2-y1)/(x2-x1) * (x-x1)
return y
#已知的两个点和待求的横坐标值
x1 = 1
y1 = 2
x2 = 4
y2 = 5
x = 2.5
#计算待求点的函数值
y = interpolate(x1, y1, x2, y2, x)
print("函数值为:", y)
#生成横坐标数组
x_values = np.linspace(x1, x2, 100)
#生成插值多项式函数的纵坐标数组
y_values = []
for i in x_values:
y_values.append(interpolate(x1, y1, x2, y2, i))
#绘制曲线
plt.plot(x_values, y_values, label="interpolation curve")
plt.scatter([x1, x2], [y1, y2], label="known points")
plt.scatter(x, y, label="interpolated point")
plt.legend()
plt.show()
```