支持向量机的图形意义

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
style.use('ggplot')
from sklearn import svm

#利用numpy传入6组数据,将较小的数据贴上标签视为0,较大的为1
X =np.array([[1,2],
             [3,4],
             [2.4,2],
             [10.3,15.2],
             [13.7,16.4],
             [15.3,17.8]]) 
#标签
y=[0,0,0,1,1,1]
#运用支持向量机中的SVC算法对传入的数据进行学习,运算,分类。
black_box = svm.SVC(kernel='linear',C=1.0)
black_box.fit(X,y)

#测试学习的结果,预测[15,17],此算法会贴上的标签
print(black_box.predict([[15,17]]))

#算出线性回归方程
w=black_box.coef_[0] #垂直向量
print(w)

a=-w[0]/w[1]
xx=np.linspace(0,18)
yy=a*xx -black_box.intercept_[0]/w[1]


H=plt.plot(xx,yy,'r-',label='not consider weight~')
plt.scatter(X[:,0],X[:,1],c=y)
plt.legend()
plt.show() 
-------------------------
#运算结果
[1]
[0.08168746 0.1253287 ]

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值