支持向量机(SVM)图文详解

支持向量机(SVM)图文详解


在看过很多大佬的博客,知乎还有两本机器学习的书籍后总结出的关于支持向量机(SVM)的相关知识,大一学生第一次发博客,请多多指教。

1.引言

什么是SVM?我们要用SVM干嘛?
我们先看下面这个问题:用一个小木棍分割不同种类的小球,那么要如何去分呢?

现在有A,B完成了这项任务(如下图)
在这里插入图片描述
那么问题来了,如何判断哪种分割方法更好呢?
在这里插入图片描述
由上图可知,在添加其他随机的小球时,A的小木棍还是可以准确将不同种的小球划分开来的;而B的小木棍就会产生错误分类的情况。我们把这种适应未知数据的能力称之为容忍能力。
我们是否可以找到一个最优的线,使得其容忍能力最强呢?
这个工作实际上就是SVM的目标,即找到一个特殊超平面距离最近的数据点最远,而该平面称之为最优超平面。(二维叫线,三维叫面,三维以上为超平面)

用于分离的超平面形式的决策曲面方程:
w T x + b = 0 \bm{w}^{T}\bm{x}+b=0 wTx+b=0

2.详解

后面都是公式推导了,我已将详细的推导过程整理出来,自己推一遍比看很多文章要有效。

我们将采集到的样本表示为{( x i , d i x_{i},d_{i} xi,di)}, x i x_{i} xi表示数据, d i d_{i} di表示数据类别。
那么我们假设
{ w T x i + b ≥ 0 当 d i = + 1 w T x i + b &lt; 0 当 d i = − 1 \left\{ \begin{aligned} \bm{w}^{T}\bm{x_{i}}+b\geq0当d_{i}=+1\\ \bm{w}^{T}\bm{x_{i}}+b&lt;0 当d_{i}=-1\\ \end{aligned} \right. {wTxi+b0di=+1wTxi+b<0di=1

在这里插入图片描述
我们把距离线最近的点称之为支持向量点,支持向量机的名字也由此而来。
如图可知支持向量点 x x x到线距离 r r r小于等于任意样本点 x 1 x_{1} x1到线距离 w T x i + b ∣ ∣ w ∣ ∣ {\frac{\bm{w}^{T}\bm{x_{i}}+b}{||\bm{w}||}} wwTxi+b
则有
{ w T x i + b ∣ ∣ w ∣ ∣ ≥ + r 当 d i = + 1 w T x i + b ∣ ∣ w ∣ ∣ ≤ − r 当 d i = − 1 \left\{ \begin{aligned} \frac{\bm{w}^{T}\bm{x_{i}}+b}{||\bm{w}||}\geq+r当d_{i}=+1\\ \frac{\bm{w}^{T}\bm{x_{i}}+b}{||\bm{w}||}\leq-r 当d_{i}=-1\\ \end{aligned} \right. wwTxi+b+rdi=+1wwTxi+brdi=1

化简得
{ w r T x i + b r ≥ + 1 当 d i = + 1 w r T x i + b r ≤ − 1 当 d i = − 1 \left\{ \begin{aligned} \bm{w_{r}}^{T}\bm{x_{i}}+b_{r}\geq+1当d_{i}=+1\\ \bm{w_{r}}^{T}\bm{x_{i}}+b_{r}\leq-1 当d_{i}=-1\\ \end{aligned} \right. {wrTxi+br+1di=+1wrTxi+br1di=1
上式是我们的约束关系
在这里插入图片描述
引言中说道我们的目的就是找到一个特殊超平面距离最近的数据点最远,那么
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,它在图像分类问题中也有广泛的应用。Python中有多个库可以用来实现SVM图片分类,如scikit-learn和libsvm等。 首先,我们需要准备一个图像数据集用于训练和测试。可以选择包含不同类别的图像,例如猫和狗的图像。每个图像需要转换为数值矩阵作为分类器的输入。 接下来,我们可以使用scikit-learn库中的svm模块来构建和训练SVM分类器。首先,我们需要将图像数据集划分为训练集和测试集,通常使用交叉验证的方式进行。然后,我们可以将图像数据转换为特征向量,例如使用颜色直方图、SIFT或HOG等方法提取图像特征。 在训练阶段,我们可以使用训练集来拟合SVM模型。可以选择不同的核函数,如线性核、多项式核或高斯核,根据实际情况选择合适的核函数。通过调整模型的超参数和正则化参数,可以优化模型的性能。 在测试阶段,我们可以使用训练好的模型对测试集进行分类预测。将测试集中的图像数据转换为特征向量,并使用训练好的SVM模型进行预测。预测结果可以与真实标签进行比较,计算准确率、精确率和召回率等评估指标,来评估模型的性能。 最后,可以根据实际需求对模型进行优化和改进。可以尝试不同的特征提取方法、调整模型的超参数,或使用集成学习等方法来进一步提升分类器的性能。 总之,通过使用Python中的svm模块,可以实现对图像数据集进行分类的SVM模型。需要准备数据集、选择合适的特征提取方法和核函数,进行训练和测试,并根据实际需求优化模型的性能。 ### 回答2: SVM支持向量机,是一种常用的监督学习算法,它在图像分类中也有着广泛的应用。在使用Python进行SVM图片分类时,我们可以借助一些常用的Python库和工具。 首先,我们需要导入所需要的库,如sklearn、numpy和matplotlib等。然后,准备好我们的图像数据集。可以使用现有的数据集,也可以通过图片爬虫等手段获取图像数据集。 接下来,我们需要对图像进行预处理。通常,图像是以像素值的形式表示的,我们需要将其转换为特征向量。在这里,可以使用像素的灰度、颜色直方图、SIFT特征等进行提取。提取好特征后,需要将特征向量和相应的标签进行配对,作为训练样本。 得到训练样本后,我们就可以使用SVM进行分类了。一般来说,可以选择线性SVM或高斯核SVM。线性SVM适用于线性可分的情况,而高斯核SVM可以处理非线性问题。 在进行分类之前,需要将数据集划分为训练集和测试集。训练集用于训练模型,而测试集用于评估模型的性能。我们可以使用交叉验证等技术来选择模型的超参数,如正则化参数C和高斯核的宽度σ。 训练好的SVM模型可以用于预测新的图像。给定一个新的图像样本,我们可以将其特征向量输入到模型中,得到一个预测的类别标签。 最后,可以使用一些评估指标,如准确率、召回率和F1值等,来评估模型的性能。 综上所述,使用Python进行SVM图片分类的一般步骤包括数据集准备、特征提取、模型训练和预测、以及模型性能评估。Python提供了丰富的机器学习库和工具,如scikit-learn和numpy,使得实现SVM图片分类任务变得比较简单。 ### 回答3: 支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,可以用于图像分类任务。在Python中,可以使用scikit-learn库来实现SVM图像分类。 首先,我们需要准备图像数据集。可以使用scikit-learn提供的一些内置的图像数据集,比如手写数字数据集MNIST、人脸数据集LFW等,也可以自己准备图像数据集。每张图像应该标注好对应的类别,以便用于训练和测试。 接下来,我们可以使用scikit-learn中的SVM模型来进行图像分类。首先,将图像数据集分为训练集和测试集,一般将数据集的70%作为训练集,30%作为测试集。然后,使用SVM模型进行训练,可以选择不同的核函数,如线性核、多项式核、高斯核等。训练过程中,SVM模型会找到最优的超平面,将不同类别的图像分开。 训练完成后,可以使用训练好的SVM模型对测试集中的图像进行分类。预测结果会返回每张图像属于各个类别的概率或者直接返回类别标签。可以根据预测结果与真实标签进行比较,评估模型的准确率、精确率、召回率等指标。 在实践中,为了提高模型的准确性,还可以进行一些图像预处理的操作,比如图像增强、特征提取等操作。此外,还可以使用交叉验证等技术来选择最优的模型参数。 总结起来,使用Python实现SVM图像分类需要准备好图像数据集,选择合适的SVM模型和参数,在训练集上进行模型训练,然后对测试集进行预测和评估。通过不断调优、优化,可以得到一个准确性较高的图像分类模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值