【DL】Pytorch_ONNX_ONNX-sim

本文详细介绍了如何将PyTorch模型转换为ONNX格式,并进行模型简化,适合嵌入式设备部署。内容包括PyTorch到ONNX的转换,ONNX模型的简化和可视化,以及生成可用于小站的模型和bin文件的代码示例。
摘要由CSDN通过智能技术生成

把Pytorch模型转为ONNX,并进行精简化,用于嵌入式模型部署

Pytorch2ONNX

注意:多输出需要用 [out1, out2, out3] 列表进行存储

在这里插入图片描述

import os
import torch
import torchvision
from torchstat import stat
from torchsummary import summary
from yolo import YOLO


os.chdir('../')
ROOT = os.getcwd()

# 保存的文件名
ONNX_PATH = os.path.join(ROOT, "onnx", "xhh_yolov4_tiny.onnx")

# 权重文件
file_path = "logs/3.2 use_mosaic use_Cosine_lr use_anchors/Epoch600-Total_Loss1.6992-Val_Loss1.7980.pth"
MODEL_PATH = os.path.join(ROOT, file_path)

# [1]获取模型
def getYoloModel():
    from nets.yolo4_tiny import YoloBody

    # model = YoloBody(len(anchors[0]), len(class_names)).eval()
    model = YoloBody(3, 2, xhh_out_list_for_Inference=True).eval()

    print('Loading weights into state dict...')
    state_dict = torch.load(MODEL_PATH, map_location=
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值