二叉排序树的优点:
二叉排序树相较于数组,不仅查询快,而且增删速度也更快;
二叉排序树的创建代码实现:
public class BinarySortTreeDemo {
public static void main(String[] args) {
int[] arr = {7, 3, 10, 12, 5, 1, 9};
BinarySortTree tree = new BinarySortTree();
//循环添加结点到二叉排序树
for (int i = 0; i < arr.length; i++) {
tree.add(new Node(arr[i]));
}
System.out.println("中序遍历二叉排序树:");
tree.infixOrder();
}
}
class BinarySortTree{
private Node root;
//创建二叉树的方法
public void add(Node node){
if(root == null){
root = node;
}else {
root.add(node);
}
}
//遍历的方法,中序遍历
public void infixOrder(){
if (root != null){
root.infixOrder();
}else {
System.out.println("当前二叉树为空!");
}
}
}
class Node{
int value;
Node left;
Node right;
public Node(int value) {
this.value = value;
}
@Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}
//递归的方法添加节点,需要满足二叉排序树的要求
public void add(Node node){
if (node == null){
return;
}
//判断结点和当前结点的大小关系
if (node.value < this.value){
//如果当前左子结点为空
if (this.left == null){
this.left = node;
}else {
//递归向左子树添加
this.left.add(node);
}
}else {
//如果当前右子结点为空
if (this.right == null){
this.right = node;
}else {
this.right.add(node);
}
}
}
//中序遍历
public void infixOrder(){
if (this.left != null){
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null){
this.right.infixOrder();
}
}
}
二叉排序树的删除:
以此棵二叉树为例:
第一种情况: 删除叶子节点(比如: 2,5, 9, 12)思路
(1)需求先去找到要删除的结点targetNode
(2)找到targetNode的父结点parent
(3)确定targetNode是parent的左子结点还是右子结点
(4)根据前面的情况来对应删除左子结点parent.left = null右子结点parent.right = null;
第二种情况: 删除只有- -颗子树的节点比如1思路
(1)需求先去找到要删除的结点targetNode
(2)找到targetNode的父结点parent
(3)确定targetNode的子结点是左子结点还是右子结点
(4) targetNode是parent的左子结点还是右子结点
(5)如果targetNode有左子结点
5.1如果targetNode是parent的左子结点 parent.left = targetNode.left;
5.2如果targetNode是parent的右子结点 parent.right = targetNode.left;
(6)如果targetNode有右子结点
6.1如果targetNode是parent的左子结点 parent.left = targetNode.right
6.2如果targetNode是parent的右子结点 parent.right = targetNode.right
情况三: 删除有两颗子树的节点. (此如: 7,3, 10)思路
(1)需求先去找到要删除的结点targetNode
(2)找到targetNode的父结点parent
(3)从targetNode 的右子树找到最小的结点
(4)用一一个临时变量,将最小结点的值保存temp = min
(5)删除该最小结点
(6) targetNode.value = temp
package BinarySortTree;
public class BinarySortTreeDemo {
public static void main(String[] args) {
int[] arr = {7, 3, 10, 12, 5, 1, 9 , 0};
BinarySortTree tree = new BinarySortTree();
//循环添加结点到二叉排序树
for (int i = 0; i < arr.length; i++) {
tree.add(new Node(arr[i]));
}
System.out.println("中序遍历二叉排序树:");
tree.infixOrder();
tree.delete(10);
System.out.println("中序遍历二叉排序树:");
tree.infixOrder();
}
}
class BinarySortTree{
private Node root;
//创建二叉树的方法
public void add(Node node){
if(root == null){
root = node;
}else {
root.add(node);
}
}
//遍历的方法,中序遍历
public void infixOrder(){
if (root != null){
root.infixOrder();
}else {
System.out.println("当前二叉树为空!");
}
}
//查找要删除的结点
public Node search(int value){
if (root != null){
return root.search(value);
}else {
return null;
}
}
//查找要删除的结点的父结点
public Node searchParent(int value){
if (root != null){
return root.searchParent(value);
}else {
return null;
}
}
//编写方法
/**
* 1.返回以node为根结点的二叉排序树的最小节点值
* 2.删除node为根结点的二叉排序树的最小结点
* @param node
* @return
* */
public int delRightTreeMin(Node node){
Node target = node;
while (target.left != null){
target = target.left;
}
delete(target.value);
return target.value;
}
//删除结点
public void delete(int value){
if (root == null){
return;
}else {
//先找到要删除的结点
Node targetNode = search(value);
//如果没有找到要删除的结点
if (targetNode == null){
return;
}
//如果我们发现这颗二叉树只有一个节点
if (root.left == null && root.right == null){
root = null;
return;
}
//去找到targetNode的父结点
Node parent = searchParent(value);
//如果要删除的结点是叶子结点
if (targetNode.left == null && targetNode.right == null){
//判断targetNode是parent的左子结点还是右子结点
if (parent.left != null && parent.left.value == value){//左子节点
parent.left = null;
}else if (parent.right != null && parent.right.value == value){
parent.right = null;
}
}else if (targetNode.left != null && targetNode.right != null){//删除两个子树的结点
int minVal = delRightTreeMin(targetNode.right);
targetNode.value = minVal;
}else {//删除一个子树的结点
//如果要删除的树有左子节点
if (targetNode.left != null){
if (parent != null) {
//如果targetNode有左子结点
if (parent.left.value == value) {
parent.left = targetNode.left;
} else {
parent.right = targetNode.left;
}
} else {
root = targetNode.left;
}
}else {
if (parent != null) {
//如果targetNode有右子结点
if (parent.left.value == value) {
parent.left = targetNode.right;
} else {
parent.right = targetNode.right;
}
}else {
root = targetNode.right;
}
}
}
}
}
}
class Node{
int value;
Node left;
Node right;
public Node(int value) {
this.value = value;
}
//查找结点
/**
* @param value 希望删除的结点的值
* @return 查找到节点就返回该节点,没有找到就返回null
* */
public Node search(int value){
if (value == this.value){
return this;
}else if (value < this.value){
if (this.left == null){
return null;
}
return this.left.search(value);
}else {
if (this.right == null){
return null;
}
return this.right.search(value);
}
}
//查找要删除结点的父结点
/**
* @param value 要找到的结点的值
* @return 返回的是要删除的结点的父结点,如果没有就返回null
* */
public Node searchParent(int value){
//如果当前结点就是要删除的结点的父结点,就返回
if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)){
return this;
}else {
//如果查找的值小于当前结点的值,并且当前结点的左子结点不为空
if (value < this.value && this.left != null){
return this.left.searchParent(value);
}else if (value >= this.value && this.right != null){
return this.right.searchParent(value);
}else {
return null; //没有找到父结点
}
}
}
@Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}
//递归的方法添加节点,需要满足二叉排序树的要求
public void add(Node node){
if (node == null){
return;
}
//判断结点和当前结点的大小关系
if (node.value < this.value){
//如果当前左子结点为空
if (this.left == null){
this.left = node;
}else {
//递归向左子树添加
this.left.add(node);
}
}else {
//如果当前右子结点为空
if (this.right == null){
this.right = node;
}else {
this.right.add(node);
}
}
}
//中序遍历
public void infixOrder(){
if (this.left != null){
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null){
this.right.infixOrder();
}
}
}