二叉排序树

二叉排序树的优点:
二叉排序树相较于数组,不仅查询快,而且增删速度也更快;

二叉排序树的创建代码实现:

public class BinarySortTreeDemo {
    public static void main(String[] args) {
        int[] arr = {7, 3, 10, 12, 5, 1, 9};
        BinarySortTree tree = new BinarySortTree();

        //循环添加结点到二叉排序树
        for (int i = 0; i < arr.length; i++) {
            tree.add(new Node(arr[i]));
        }

        System.out.println("中序遍历二叉排序树:");
        tree.infixOrder();
    }
}

class BinarySortTree{
    private Node root;

    //创建二叉树的方法
    public void add(Node node){
        if(root == null){
            root = node;
        }else {
            root.add(node);
        }
    }

    //遍历的方法,中序遍历
    public void infixOrder(){
        if (root != null){
            root.infixOrder();
        }else {
            System.out.println("当前二叉树为空!");
        }
    }
}

class Node{
    int value;
    Node left;
    Node right;

    public Node(int value) {
        this.value = value;
    }

    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    //递归的方法添加节点,需要满足二叉排序树的要求
    public void add(Node node){
        if (node == null){
            return;
        }
        //判断结点和当前结点的大小关系
        if (node.value < this.value){
            //如果当前左子结点为空
            if (this.left == null){
                this.left = node;
            }else {
                //递归向左子树添加
                this.left.add(node);
            }
        }else {
            //如果当前右子结点为空
            if (this.right == null){
                this.right = node;
            }else {
                this.right.add(node);
            }
        }
    }
    //中序遍历
    public void infixOrder(){
        if (this.left != null){
            this.left.infixOrder();
        }
        System.out.println(this);
        if (this.right != null){
            this.right.infixOrder();
        }
    }
}

二叉排序树的删除:

以此棵二叉树为例:
要删除的二叉树安案例

第一种情况: 删除叶子节点(比如: 2,5, 9, 12)思路

(1)需求先去找到要删除的结点targetNode
(2)找到targetNode的父结点parent
(3)确定targetNode是parent的左子结点还是右子结点
(4)根据前面的情况来对应删除左子结点parent.left = null右子结点parent.right = null;

第二种情况: 删除只有- -颗子树的节点比如1思路

(1)需求先去找到要删除的结点targetNode
(2)找到targetNode的父结点parent
(3)确定targetNode的子结点是左子结点还是右子结点
(4) targetNode是parent的左子结点还是右子结点
(5)如果targetNode有左子结点

5.1如果targetNode是parent的左子结点 parent.left = targetNode.left;
5.2如果targetNode是parent的右子结点 parent.right = targetNode.left;

(6)如果targetNode有右子结点
6.1如果targetNode是parent的左子结点 parent.left = targetNode.right
6.2如果targetNode是parent的右子结点 parent.right = targetNode.right

情况三: 删除有两颗子树的节点. (此如: 7,3, 10)思路

(1)需求先去找到要删除的结点targetNode
(2)找到targetNode的父结点parent
(3)从targetNode 的右子树找到最小的结点
(4)用一一个临时变量,将最小结点的值保存temp = min
(5)删除该最小结点
(6) targetNode.value = temp


package BinarySortTree;

public class BinarySortTreeDemo {
    public static void main(String[] args) {
        int[] arr = {7, 3, 10, 12, 5, 1, 9 , 0};
        BinarySortTree tree = new BinarySortTree();

        //循环添加结点到二叉排序树
        for (int i = 0; i < arr.length; i++) {
            tree.add(new Node(arr[i]));
        }

        System.out.println("中序遍历二叉排序树:");
        tree.infixOrder();

        tree.delete(10);

        System.out.println("中序遍历二叉排序树:");
        tree.infixOrder();
    }
}

class BinarySortTree{
    private Node root;

    //创建二叉树的方法
    public void add(Node node){
        if(root == null){
            root = node;
        }else {
            root.add(node);
        }
    }

    //遍历的方法,中序遍历
    public void infixOrder(){
        if (root != null){
            root.infixOrder();
        }else {
            System.out.println("当前二叉树为空!");
        }
    }

    //查找要删除的结点
    public Node search(int value){
        if (root != null){
            return root.search(value);
        }else {
            return null;
        }
    }

    //查找要删除的结点的父结点
    public Node searchParent(int value){
        if (root != null){
            return root.searchParent(value);
        }else {
            return null;
        }
    }

    //编写方法
    /**
     * 1.返回以node为根结点的二叉排序树的最小节点值
     * 2.删除node为根结点的二叉排序树的最小结点
     * @param node
     * @return
     * */
    public int delRightTreeMin(Node node){
        Node target = node;
        while (target.left != null){
            target = target.left;
        }
        delete(target.value);
        return target.value;
    }

    //删除结点
    public void delete(int value){
        if (root == null){
            return;
        }else {
            //先找到要删除的结点
            Node targetNode = search(value);
            //如果没有找到要删除的结点
            if (targetNode == null){
                return;
            }
            //如果我们发现这颗二叉树只有一个节点
            if (root.left == null && root.right == null){
                root = null;
                return;
            }

            //去找到targetNode的父结点
            Node parent = searchParent(value);
            //如果要删除的结点是叶子结点
            if (targetNode.left == null && targetNode.right == null){
                //判断targetNode是parent的左子结点还是右子结点
                if (parent.left != null && parent.left.value == value){//左子节点
                    parent.left = null;
                }else if (parent.right != null && parent.right.value == value){
                    parent.right = null;
                }
            }else if (targetNode.left != null && targetNode.right != null){//删除两个子树的结点
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value = minVal;
            }else {//删除一个子树的结点
                //如果要删除的树有左子节点
                if (targetNode.left != null){
                    if (parent != null) {
                        //如果targetNode有左子结点
                        if (parent.left.value == value) {
                            parent.left = targetNode.left;
                        } else {
                            parent.right = targetNode.left;
                        }
                    } else {
                        root = targetNode.left;
                    }
                }else {
                    if (parent != null) {
                        //如果targetNode有右子结点
                        if (parent.left.value == value) {
                            parent.left = targetNode.right;
                        } else {
                            parent.right = targetNode.right;
                        }
                    }else {
                        root = targetNode.right;
                    }
                }
            }

        }
    }

}

class Node{
    int value;
    Node left;
    Node right;

    public Node(int value) {
        this.value = value;
    }

    //查找结点
    /**
     * @param value 希望删除的结点的值
     * @return 查找到节点就返回该节点,没有找到就返回null
     * */
    public Node search(int value){
        if (value == this.value){
            return this;
        }else if (value < this.value){
            if (this.left == null){
                return null;
            }
            return this.left.search(value);
        }else {
            if (this.right == null){
                return null;
            }
            return this.right.search(value);
        }
    }

    //查找要删除结点的父结点
    /**
     * @param value  要找到的结点的值
     * @return  返回的是要删除的结点的父结点,如果没有就返回null
     * */
    public Node searchParent(int value){
        //如果当前结点就是要删除的结点的父结点,就返回
        if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)){
            return this;
        }else {
            //如果查找的值小于当前结点的值,并且当前结点的左子结点不为空
            if (value < this.value && this.left != null){
                return this.left.searchParent(value);
            }else if (value >= this.value && this.right != null){
                return this.right.searchParent(value);
            }else {
                return null;  //没有找到父结点
            }
        }
    }

    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    //递归的方法添加节点,需要满足二叉排序树的要求
    public void add(Node node){
        if (node == null){
            return;
        }
        //判断结点和当前结点的大小关系
        if (node.value < this.value){
            //如果当前左子结点为空
            if (this.left == null){
                this.left = node;
            }else {
                //递归向左子树添加
                this.left.add(node);
            }
        }else {
            //如果当前右子结点为空
            if (this.right == null){
                this.right = node;
            }else {
                this.right.add(node);
            }
        }
    }
    //中序遍历
    public void infixOrder(){
        if (this.left != null){
            this.left.infixOrder();
        }
        System.out.println(this);
        if (this.right != null){
            this.right.infixOrder();
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值