AMD显卡(RX6750gre)+ubuntu22.04搭配Anaconda部署ROCM环境以及pyTorch框架

前清提示:
如果你还没有购买显卡,想学习AI方面,并且资金充足的情况下。
千万不要购买AMD显卡
千万不要购买AMD显卡
千万不要购买AMD显卡

目前不管是PyTorch还是TensorFlow对N卡在CUDA的支持方面都远远的高于AMD的ROCM。
还有很关键的一点就是,AMD的ROCM目前对windows系统是不支持的,即使AMD新推出的显卡在windows上使用,也是基于wsl2在windows上安装子系统,用的一样是linux命令符。不喜欢或不习惯linux操作系统的,选显卡的时候一定要慎重。
这是amd官方对于他们自己显卡对应的ROCM版本支持列表
如果你是和标题一样,使用的AMD 6750gre这张显卡,那上面的链接你就不用去看了,因为对于AMD对于这在中低端的卡,是没有ROCM支持的。但是方法总比困难多,如果你已经入了这张显卡,那你还是可以使用下面的方法,搭建自己的ROCM环境。

Docker和Anaconda

虽然AMD官网里面有已经安装好pyTorch的docker打包版,但是就功能区别而言。我个人更加推荐Anaconda。

​功能维度​​​Docker​​​Anaconda​​
​环境隔离​​操作系统级隔离(容器)Python 虚拟环境(进程级隔离)
​依赖管理​​打包整个应用环境(系统库、语言环境等)管理 Python 包和依赖
​跨平台支持​​支持 Windows/macOS/Linux支持 Windows/macOS/Linux
​资源占用​​较高(需运行容器引擎)较低(仅虚拟环境)
​学习曲线​​较高(需理解容器、镜像、编排等概念)较低(适合 Python 开发者)
​典型用途​​应用部署、微服务、持续集成/交付(CI/CD)数据分析、机器学习开发、本地实验

从上面的表格就可以看出,Anaconda更适合我们python用户。并且官网提供的Docker包,其中很多东西都不可以自己选择,很容易就会导致你安装的ROCM和其pyTorch包的版本不兼容,导致程序报错。

我个人的电脑配置

  • CPU: AMD Ryzen 5 7500F
  • GPU:AMD Radeon rx 6750gre 12GB 白金版
  • 系统: Ubuntu 22.04.5 LTS

1、安装系统

因为目前6750gre不支持wsl2和docker的Ubuntu容器环境,所以想要使用需要在自己物理机上搭建linux系统。官方给出的建议是使用Ubuntu 22.04.5或Ubuntu 24.04.2。所以需要自己在本地搭建为windows双系统。

准备工作

首先,我们需要准备一个u盘,至少不小于8G
其次呢,我们需要给自己的电脑预留出一定的空间进行系统的安装,这个可以使用分盘工具。

我个人是分出了200G的空间,因为后期sd里面很多大模型一个就得5-15G,多留点不是坏事。

然后现在去Ubuntu官网下载对应的版本系统就可以了。
Ubuntu系统下载地址

这边建议还是下载22.04.5这个版本就好,因为这个版本我自己测试过可以使用。

同时我们也需要安装一个将iso文件写入u盘的工具,这里推荐大家选择UltraIso

然后再往下重装系统的操作,我这里就不写了,其他博主那里有很多带着图片的详细教材。

2、在你的ubuntu系统上安装amd的ROCm驱动

AMD官网对于ROCM驱动的官方下载地址

2.1 安装驱动程序

官方版本安装:

sudo apt update
wget https://repo.radeon.com/amdgpu-install/6.3.3/ubuntu/jammy/amdgpu-install_6.3.60303-1_all.deb
sudo apt install ./amdgpu-install_6.3.60303-1_all.deb
sudo apt update

但是我个人并不建议这样,因为官方版本安装的是6.3.3,这是(2024年8月发布),更多的是对RDNA3+ 架构​​(gfx1150)的实验性支持。但是我们6750GRE是属于RDNA2,所有我们使用ROCm 6.2.4

个人推荐版本安装(推荐)

一、添加官方仓库以及添加依赖项
sudo apt update
sudo apt install linux-headers-$(uname -r) linux-modules-extra-$(uname -r) libnuma-dev
# 导入 GPG 密钥
wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo gpg --dearmor -o /usr/share/keyrings/rocm-archive-keyring.gpg

# 添加仓库配置(仅 amd64 架构)
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/rocm-archive-keyring.gpg] https://repo.radeon.com/rocm/apt/6.2.4 jammy main" | sudo tee /etc/apt/sources.list.d/rocm.list
二、安装核心组件
sudo apt update
sudo apt install rocm-hip-libraries rocm-dev rocm-utils rocm-dkms
sudo reboot  # 重启以加载内核模块
三、配置用户权限和环境变量
(1)用户组权限
sudo usermod -aG video $USER
sudo usermod -aG render $USER
sudo reboot  # 重启生效
(2)环境变量
export PATH=$PATH:/opt/rocm/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib
source ~/.bashrc
(3)GPU 架构覆盖(这个必须要添加,要不然后面上项目了嘎嘎报错)
echo 'export HSA_OVERRIDE_GFX_VERSION=10.3.0' >> ~/.bashrc
source ~/.bashrc
四、验证安装(如果你有pycharm,直接跳过去第五步)
1、检查ROCM状态
# 查看 GPU 识别状态
/opt/rocm/bin/rocminfo | grep "Agent Name"

# 检查内核模块
lsmod | grep -E "amdgpu|amdkfd"
2、运行 HIP 测试程序​​
# 编译并运行 HIP 示例
echo '#include <hip/hip_runtime.h>\n int main() { int dev; hipGetDeviceCount(&dev); printf("Devices: %d\\n", dev); }' > test.cpp
hipcc test.cpp -o test
./test  # 应输出检测到的 GPU 数量
五、安装Anaconda并且部署pyTorch框架

Anaconda官网下载地址
在这里插入图片描述

1、下载Anaconda安装脚本​​

打开终端,执行以下命令下载最新版Anaconda

# 进入临时下载目录
cd /tmp

# 使用wget下载(替换为官网最新链接)
wget https://repo.anaconda.com/archive/Anaconda3-2024.10-1-Linux-x86_64.sh

最新的版本可以通过此链接去官网查看

2、运行安装脚本​​
# 启动安装程序
bash Anaconda3-2024.10-1-Linux-x86_64.sh
  • 按 Enter 浏览许可协议,输入 yes 同意条款。
  • 选择安装路径(默认:~/anaconda3),直接按 Enter 使用默认路径。
  • 安装完成后,输入 yes 以初始化Anaconda。
3、激活配置​​
# 更新当前Shell配置
source ~/.bashrc
4、验证安装
# 检查conda版本
conda --version

# 列出已安装包
conda list
5、配置虚拟环境
# 创建新环境
conda create --name pyTorch python=3.10

# 激活环境
conda activate pyTorch

# 退出环境
conda deactivate
6、安装pyTorch

AMD提供安装pyTorch版本选择的官网

(1)安装torch、torchvision以及torchaudio
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2.4
(2)在pycharm中创建一个项目

python路径选择你自己安装的anaconda3的安装地址,进入envs包,里面应该有你自己才创建的pyTorch环境,然后进入bin包,选择里面的python.sh。(我这是用的Windows演示,因为我不知道Linux里面如何截图)

输入代码:

import torch
print(f"PyTorch 版本: {torch.__version__}")
print(f"ROCm 可用性: {torch.cuda.is_available()}")
print(f"HIP 版本: {torch.version.hip}")

输出结果:

PyTorch 版本: 2.6.0+rocm6.2.4
ROCm 可用性: True
HIP 版本: 6.2.41134-65d174c3e

这种情况就可以证明是安装成功了。

### 更改 Anaconda 的镜像源 为了提高软件包的下载速度并解决可能存在的网络访问问题,在 Ubuntu 22.04 上可以配置 Anaconda 使用国内镜像源。具体操作如下: #### 修改 `~/.condarc` 文件来设置清华 TUNA 或者中科大镜像作为默认源。 如果尚未创建此文件,则可以通过执行命令 `conda config --set show_channel_urls yes` 来初始化它[^1]。 对于希望使用清华大学开源软件镜像站的情况,可以在终端输入以下指令: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/ conda config --set show_channel_urls yes ``` 同样地,也可以选择中国科学技术大学提供的镜像服务: ```bash conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/pytorch/ conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/ conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/ conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/ conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/ conda config --set show_channel_urls yes ``` 上述命令会向用户的 Conda 渠道列表中添加来自指定服务器的新条目,并确保显示渠道网址以便于确认所使用的资源位置[^2]。 完成这些更改之后,建议更新现有的环境以应用新的配置: ```bash conda update conda conda update --all ``` 通过这种方式能够有效地改善因国际带宽限制而导致的速度瓶颈问题,同时也减少了由于国外网站不稳定所带来的困扰。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值