0. 官方说明:
按照官方文档,操作到底:
prerequisite 中也有操作;
显卡类型:镭7 Radeon vii,1200元闲鱼
1. 前置条件
2. 安装
2.1
2.2
2.3
部分安装命令,前面的页面也有分组之类的,可能不在这里,后半部分:
189 uname -srmv
190 lspci | grep -i Display
191 sudo lspci | grep -i Display
192 lspci | grep -i display
193 lspci
194 sudo apt list --installed | egrep 'wget\|gnupg2|gawk|curl'
195 sudo apt-get update && sudo apt-get install wget gnupg2 gawk curl
196 ls /opt/rocm -all
197 ls /opt/rocm-5.4.3/ -all
198 ls /opt/rocm-5.4.3 -all
199 ls /opt/rocm -all
200 ls /etc/alternatives/rocm -all
201 cd /opt/rocm-5.4.3/
202 ls
203 ls opencl/
204 ls opencl/lib/
205 ls
206 ls lib
207 ls lib/libOpenCL.so -all
208 ls lib/libOpenCL.so.a -all
209 ls lib/libOpenCL.so.1 -all
210 cd
211 sudo amdgpu-install --usecase=hiplibsdk,rocm
212 sudo amdgpu-install --list-usecase
213 sudo dpkg -l | grep linux-headers
214 sudo dpkg -l | grep linux-modules-extra
215 sudo apt install linux-headers-`uname -r` linux-modules-extra-`uname -r`
216 ls
217 mkdir installrocm
218 cd installrocm/
219 curl -fsSL https://repo.radeon.com/rocm/rocm.gpg.key | sudo gpg --dearmor -o /etc/apt/trusted.gpg.d/rocm-keyring.gpg
220 echo 'deb [arch=amd64 signed-by=/etc/apt/trusted.gpg.d/rocm-keyring.gpg] https://repo.radeon.com/amdgpu/5.4.3/ubuntu focal main' | sudo tee /etc/apt/sources.list.d/amdgpu.list
221 sudo apt-get update
222 sudo apt install amdgpu-dkms
223 sudo reboot
224 ls
225 cd ex
226 mkdir glfw3_ex
227 cd glfw3_ex/
228 ls
229 wget https://github.com/glfw/glfw/releases/download/3.3.8/glfw-3.3.8.zip
230 ls
231 unzip
232 unzip glfw-3.3.8.zip
233 ls
234 cd glfw-3.3.8/
235 ls
236 mkdir build
237 cd build/
238 cmake ..
239 sudo apt-get install libxrandr-dev
240 cmake ..
241 sudo apt-get install libsdl2-dev
242 cmake ..
243 ls
244 make -j
3. 运行示例
3.1 下载示例:
git clone https://github.com/amd/rocm-examples.git
3.2
mkdir build
cd build
cmake ..
make -j
如果缺少glfw3之类的,可以参考:
Ubuntu18.04安装glfw3.3_qq_38196982的博客-CSDN博客
3.3 run:
运行rocBLAS 的 gemm_stride...:
运行示例的同时,执行rocm-smi:
发现问题升高,gpu%占用上升
4. 安装pytorch
pytorch 官方目前支持到 rocm 5.4.2, 虽然没有读过官方文档,只好假设 rocm是向前兼容的,于是直接安装 这个版本的pytorch即可:
rocman@Radeonnvii-host:~$ sudo pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2
4.2 运行示例:
gpu版本的 mnist 代码:
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
if args.dry_run:
break
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=14, metavar='N',
help='number of epochs to train (default: 14)')
parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--no-mps', action='store_true', default=False,
help='disables macOS GPU training')
parser.add_argument('--dry-run', action='store_true', default=False,
help='quickly check a single pass')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
use_mps = not args.no_mps and torch.backends.mps.is_available()
torch.manual_seed(args.seed)
if use_cuda:
device = torch.device("cuda")
elif use_mps:
device = torch.device("mps")
else:
device = torch.device("cpu")
train_kwargs = {'batch_size': args.batch_size}
test_kwargs = {'batch_size': args.test_batch_size}
if use_cuda:
cuda_kwargs = {'num_workers': 1,
'pin_memory': True,
'shuffle': True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
dataset1 = datasets.MNIST('../data', train=True, download=True,
transform=transform)
dataset2 = datasets.MNIST('../data', train=False,
transform=transform)
train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
scheduler.step()
if args.save_model:
torch.save(model.state_dict(), "mnist_cnn.pt")
if __name__ == '__main__':
main()
rocm 5.4.3 安装 pytorch-rocm 5.4.2 发现跑出来的结果不正确,跟没有训练是一样的:
用cuda能跑正确:
虽然可以查找到设备: