描述:
地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?
示例 1:
输入:m = 2, n = 3, k = 1
输出:3
示例 2:
输入:m = 3, n = 1, k = 0
输出:1
提示:
1 <= n,m <= 100
0 <= k <= 20
通过次数62,612提交次数124,730
来源:力扣(LeetCode)
代码:
class Solution {
int m,n,k;
boolean[][] visited;
public int movingCount(int m, int n, int k) {
this.m=m;
this.n=n;
this.k=k;
this.visited=new boolean[m][n];
return dfs(0,0,0,0);
}
public int dfs(int i,int j,int si,int sj){
if(i>=m||j>=n||si+sj>k||visited[i][j]){
return 0;
}
visited[i][j]=true;
return 1+dfs(i+1,j,(i+1)%10!=0?si+1:si-8,sj)+dfs(i,j+1,si,(j+1)%10!=0?sj+1:sj-8);
}
}
这是深度优先遍历,主要还是在dfs这里的递归 向右和向下查找。
下面是广度优先算法:
public int movingCount(int m, int n, int k) {
//广度优先遍历
//利用队列
boolean[][] visited=new boolean[m][n];
int res =0;
Queue<int[]> queue=new LinkedList<int[]>();
queue.add(new int[] { 0, 0, 0, 0});
while(queue.size()>0){
int[] x=queue.poll();
int i=x[0],j=x[1],si=x[2],sj=x[3];
if(i>=m||j>=n||k<si+sj||visited[i][j]){
continue;
}
res++;
visited[i][j]=true;
queue.add(new int[]{i+1,j,(i+1)%10!=0?si+1:si-8,sj});
queue.add(new int[]{i,j+1,si,(j+1)%10!=0?sj+1:sj-8});
}
return res;
}
广度优先算法不采用函数的递归,而是采用的队列的思路, 把第一个添加进队列 然后把他的右边和下边的数 添加到队列,以实现广度的思想。