sklearn计算准确率和召回率

精确率和召回率

精确率和召回率具体介绍

from sklearn.metrics import classification_report,confusion_matrix

# 计算多分类的准确率和召回率,y为valid_loader为DataLoader类型
total_labels = valid_loader.dataset.y.tolist()
target_names = ['DDoS', 'SSH', 'Port', 'FTP', 'web']
precision_recall_report = classification_report(y_true=total_labels , y_pred=total_pred, target_names=target_names)
print('算法迭代时间:'+ str(end- start) +'\n算法精确率与召回率:')
print(precision_recall_report)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值