回归+损失函数+图片分类数据集

从回归到多类分类

##

从回归到多类分类-均方损失

在这里插入图片描述

从回归到多类分类-无校验比例

在这里插入图片描述

从回归到多类分类-校验比例

在这里插入图片描述

Softmax和交叉熵损失

在这里插入图片描述
在这里插入图片描述

损失函数

L2 Loss

在这里插入图片描述

L1 Loss

在这里插入图片描述

Huber’ s Robust Loss

在这里插入图片描述

图像分类数据

(MNIST数据集) :cite:LeCun.Bottou.Bengio.ea.1998 (是图像分类中广泛使用的数据集之一,但作为基准数据集过于简单。 我们将使用类似但更复杂的Fashion-MNIST数据集)

%matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l

d2l.use_svg_display()

读取数据集
我们可以[通过框架中的内置函数将Fashion-MNIST数据集下载并读取到内存中]。

# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0到1之间
trans = transforms.ToTensor()#预处理
mnist_train = torchvision.datasets.FashionMNIST(
    root="../data", train=True, transform=trans, download=True)#train=ture下载的是训练数据集
#transform=trans指的是下载的是pytorch的tensor
mnist_test = torchvision.datasets.FashionMNIST(
    root="../data", train=False, transform=trans, download=True)

数据下载…
在这里插入图片描述
Fashion-MNIST由10个类别的图像组成, 每个类别由训练数据集(train dataset)中的6000张图像 和测试数据集(test dataset)中的1000张图像组成。 因此,训练集和测试集分别包含60000和10000张图像。 测试数据集不会用于训练,只用于评估模型性能。

len(mnist_train), len(mnist_test)

每个输入图像的高度和宽度均为28像素。 数据集由灰度图像组成,其通道数为1。 为了简洁起见,本书将高度 ℎ 像素、宽度 𝑤 像素图像的形状记为 ℎ×𝑤 或( ℎ , 𝑤 )。

mnist_train[0][0].shape#1表示黑白图片

在这里插入图片描述

def get_fashion_mnist_labels(labels):  #@save
    """返回Fashion-MNIST数据集的文本标签"""
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]

创建可视化函数

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):  #@save
    """绘制图像列表"""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            # 图片张量
            ax.imshow(img.numpy())
        else:
            # PIL图片
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes

训练集中的前几个样本

X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y));

在这里插入图片描述
为了使我们在读取训练集和测试集时更容易,我们使用内置的数据迭代器,而不是从零开始创建。 回顾一下,在每次迭代中,数据加载器每次都会[读取一小批量数据,大小为batch_size]。 通过内置数据迭代器,我们可以随机打乱了所有样本,从而无偏见地读取小批量。

batch_size = 256

def get_dataloader_workers():  #@save
    """使用4个进程来读取数据"""
    return 4

train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,
                             num_workers=get_dataloader_workers())
                             timer = d2l.Timer()#测试速度
for X, y in train_iter:
    continue
f'{timer.stop():.2f} sec'

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
逻辑回归是一种用于解决二分类问题的机器学习算法。在本实验中,我们使用逻辑回归算法来识别MINST(MNIST)手写数字数据集中的手写数字。 MNIST手写数字数据集是一个经典的机器学习数据集,其中包含了一系列由手写数字图片组成的训练样本。每张图片都是28x28像素大小,灰度图像,被标记为0到9之间的数字。 在实验中,我们首先需要加载MNIST数据集,并对数据进行预处理。预处理包括将每张图片转换为一维向量、标准化像素值以及划分训练数据集和测试数据集。 接下来,我们将使用逻辑回归算法来训练模型。在训练阶段,我们将使用训练数据集来调整模型的权重参数,以便能够将输入图片正确分类为0到9的数字之一。训练过程中,逻辑回归算法将通过优化损失函数来最小化预测结果与真实标签之间的差异。 训练完成后,我们将使用测试数据集来评估模型的性能。通过将测试样本输入模型并将预测结果与真实标签进行比较,可以计算出模型的准确度、精确度、召回率等指标,以评估逻辑回归算法在MINST手写数字数据集上的识别能力。 在实验中,我们可以调整逻辑回归算法的超参数(如学习率、正则化项)来优化模型性能。另外,我们还可以使用特征工程来提取更有信息量的特征,从而提高模型的性能。 总而言之,通过使用逻辑回归算法识别MINST手写数据集,我们可以实现对手写数字的自动识别,并对模型的准确度进行评估和优化。这个实验不仅可以帮助我们理解逻辑回归算法的原理和应用,还可以为实际的手写数字识别问题提供有用的参考和指导。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值