基于N-HiTS神经层次插值模型的时间序列预测——交叉验证与超参数调优

n-hits
前言

系列专栏:【深度学习:算法项目实战】✨︎
涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。

论文链接:https://arxiv.org/pdf/2201.12886v3

NHITS是一种解决时间序列长期预测中波动性和计算复杂性的模型。它采用了分层插值和多率数据采样技术,通过构建分层结构来降低计算成本并提高预测精度‌。相较于最新的Transformer架构,NHITS在平均精度上提升了16%,同时计算时间减少了50倍‌。这种模型能够更有效地处理时间序列数据,为时间序列分析提供了新的方法。

具体来说,NHITS通过结合新的分层插值和多率数据采样技术,解决了长期预测中的两个常见挑战:预测的波动性和计算复杂性。这些技术使NHITS能够依次组装其预测,强调具有不同频率和尺度的分量,同时分解输入信号并合成预测‌。这种独特的处理方式使得NHITS在长期预测任务中表现出色。

文章目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

矩阵猫咪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值