数学问题:公约数和公倍数、分数运算、素数、高精度、math常见函数

以下内容整理自《算法笔记》—胡凡

引子—数学黑洞问题

题目大意:给定四个0~9的数字,按照升序排列得到一个正整数MIN,按照降序排列得到一个正整数MAX,n=MAX-MIN,那么对n的四位也做同样的操作,发现到了最后会循环得到一个数:6174,请证明这个过程

使用函数实现功能是一个好习惯,比如这个题如果不使用函数的话,直接在主函数中用MAX和MIN去充当to_number中的sum参数,是非常危险的,如果不在循环的开头将它们置零的话。但是使用函数实现这个功能的话就从根本上消除了这个问题

#include <iostream>
#include <algorithm>
using namespace std;

bool cmp(int a,int b)
{
	return a>b;
}

void to_array(int n,int num[])//将数字的各个位存入数组 
{
	for(int i=0;i<4;i++)
	{
		num[i]=n%10;
		n=n/10;
	}
}

int to_number(int num[])//将数组转换成数字 
{
	int sum=0;
	for(int i=0;i<4;i++)
	{
		sum=sum*10+num[i];
	}
	return sum;
} 

int main()
{
	int n,MIN,MAX;
	cin>>n;
	int num[5];
	while(1)
	{
		to_array(n,num);
		sort(num,num+4);
		MIN=to_number(num);
		sort(num,num+4,cmp);
		MAX=to_number(num);
		n=MAX-MIN;
		cout<<MAX<<"-"<<MIN<<"="<<n<<endl;
		if(n==0||n==6174) break;
	}
}
最大公约数和最小公倍数

最大公约数可以使用辗转相除法:

int gcd(int a,int b)
{
	if(b==0) return a;
	else
	{
		return gcd(b,a%b);
	} 
} 

假设两个数分别是a和b,最大的公约数是d,那么,最小的公倍数是ab/d

分数的简化以及四则运算

没有啥需要注意的,对了,减法不能用minus,貌似会冲突,随便定义为minu
其余的需要注意的点在以下注释中已经注明

#include <iostream>
#include <algorithm> 
using namespace std;

struct fraction
{
	int up;
	int down;
	fraction(int x,int y):up(x),down(y){}
	fraction(){}//如果只使用上面的初始化方法,那么无法不通过参数传递,必须要通过参数传递 
};

int gcd(int a,int b)//求最大公因数 
{
	if(b==0) return a;
	else
	{
		return gcd(b,a%b);
	} 
} 

fraction reduction(fraction result)//约分 
{
	if(result.down<0)//将负号统一放到分子 
	{
		result.up=-result.up;
		result.down=-result.down;
	}
	if(result.up==0)//分子为零,就让分母为一 
	{
		result.down=1;
	}
	else//只要分子不为零就可以进行约分 
	{
		int d=gcd(abs(result.up),abs(result.down));
		result.up/=d;
		result.down/=d;
	}
	return result;
}


//以下为四则运算 
fraction add(fraction f1,fraction f2)
{
	fraction result;
	result.up=f1.up*f2.down+f2.up*f1.down;
	result.down=f1.down*f2.down;
	return reduction(result);
}

fraction minu(fraction f1,fraction f2)
{
	fraction result;
	result.up=f1.up*f2.down-f2.up*f1.down;
	result.down=f1.down*f2.down;
	return reduction(result);
}

fraction multi(fraction f1,fraction f2)
{
	fraction result;
	result.up=f1.up*f2.up;
	result.down=f1.down*f2.down;
	return reduction(result);
}

fraction divide(fraction f1,fraction f2)
{
	fraction result;
	result.up=f1.up*f2.down;
	result.down=f1.down*f2.up;
	return reduction(result); 
}

void showFraction(fraction r)
{
	r=reduction(r);
	if(r.down==1) cout<<r.up<<endl;
	else if(abs(r.up)>r.down)
	cout<<r.up/r.down<<" "<<r.up%r.down<<"/"<<r.down<<endl;
	else cout<<r.up<<"/"<<r.down<<endl;
}

int main()
{
	fraction test=fraction(1,2);
	fraction test2=fraction(2,3);
	fraction Test=add(test,test2);
	showFraction(Test);
	fraction Test2=minu(test,test2);
	showFraction(Test2);
	fraction Test3=multi(test,test2);
	showFraction(Test3);
	fraction Test4=divide(test,test2);
	showFraction(Test4);
}
素数

(1)构建素数表的两种方法(第二种略快)MAX代表素数表的上限

#include <iostream>
#include <algorithm>
#include <cmath> 
using namespace std;

const int MAX=101;
int prime[MAX],pNum =0;//pNum作为指向prime的指针,也可以表示当前数组储存的素数的数目大小 
bool p[MAX]={0};

bool isPrime(int n)//这样判断部分的时间复杂度就是根号n 
{
	if(n<=1) return false;
	int sqr=(int)sqrt(1.0*n);
	for(int i=2;i<=sqr;i++)
	{
		if(n%i==0) return false;
	}
	return true;
}

void findPrime()
{
	for(int i=1;i<MAX;i++)
	{
		if(isPrime(i)==true)
		{
			prime[pNum++]=i;
			p[i]=true;
		}
	}
}


int main()
{
	findPrime();
	for(int i=0;i<pNum;i++)
	{
		cout<<prime[i]<<" ";
	}
}
//时间复杂度是O(nlogn) 
#include <iostream>
#include <cmath>
using namespace std;

//简单来说就是因为素数的倍数一定不是素数这个原理进行消除 
const int MAX=101;
int prime[MAX],pNum=0;//储存数组 
bool p[MAX]={0};//判断是否是素数的数组 

void findPrime()
{
	for(int i=2;i<MAX;i++)
	{
		if(p[i]==false)//这个数是素数 
		{
			prime[pNum++]=i;
			for(int j=i+i;j<MAX;j+=i)
			p[j]=true;//它的倍数不是素数 
		}
	}
}

int main()
{
	//时间复杂度是O(nloglogn) 
	findPrime();
	for(int i=0;i<pNum;i++)
	cout<<prime[i]<<" ";
} 

//注:假设输出格式是每十个数字占一行,以空格分隔,但是行末不得有多余的空格
//for(int i=m;i<=n;i++)
//{
//	cout<<prime[i-1];
//	count++//初始值为0
//	if(count%10!=0&&i<n) cout<<" ";
//	else
//	cout<<endl; 
//} 

应用:分解质因数
概论:先用上述的方法制作好质数表,然后对于在0~sqrt(目的数)之间的每个质数进行尝试,对于某个质数可以整除就整除到不能整除为止,最后要么剩下1,要么就剩下一个大于sqrt(目的数)的数(绝对是质数)。在这个过程中记得保存和输出即可(这里采用第一种方法打表)

#include <iostream>
#include <cmath>
using namespace std;

const int MAX=100010;
bool is_Prime(int n)
{
	if(n==1) return false;
	int sqr=(int)sqrt(1.0*n);
	for(int i=2;i<=sqr;i++)
	{
		if(n%i==0) return false;
	}
	return true;
}

int prime[MAX],pNum=0;
void findPrime()
{
	for(int i=1;i<MAX;i++)
	{
		if(is_Prime(i)==true)
		{
			prime[pNum++]=i;
		}
	}
}//制作质数表以便应用打表法 

struct factor
{
	int x,cnt;
}fac[10];//一般不会超过10个不同的因数(都是质数),毕竟需要在int的范围内 

int main()
{
	findPrime();
	int n,num=0;
	cin>>n;
	if(n==1) cout<<"1=1";
	else
	{
		cout<<n<<"=";
		int sqr=(int)sqrt(1.0*n);
		for(int i=0;i<pNum&&prime[i]<=sqr;i++)//条件保证 用来尝试的质因数在表中 且没有过根号n 
		{
			if(n%prime[i]==0)
			{
				fac[num].x=prime[i];
				fac[num].cnt=0;
				while(n%prime[i]==0)
				{
					fac[num].cnt++;
					n/=prime[i];
				}
				num++;
			}
			if(n==1) break;
		}
		if(n!=1) 
		{
			fac[num].x=n;
			fac[num].cnt=1;
			num++;
		}
		for(int i=0;i<num;i++)
		{
			if(i>0) cout<<"*";
			cout<<fac[i].x;
			if(fac[i].cnt>1)
			cout<<"^"<<fac[i].cnt;
		}
	}
} 
高精度
#include <iostream>
#include <string>
#include <cstring>
using namespace std;

struct bigNumber
{
	int d[1000];
	int len;
	bigNumber()
	{
		memset(d,0,sizeof(d));
		len=0;
	}
};

bigNumber Transform(string a)
{
	bigNumber m;
	m.len=a.size();
	for(int i=0;i<m.len;i++)
	{
		m.d[i]=a[m.len-i-1]-'0';//保证数组是从低到高来储存 
	}
	return m;
}

//高精度加法(对于两个非负数而言),如果是其中一个为负数,那么使用高精度减法,都是负数,先去掉负号进行相加,最后加上 
bigNumber add(bigNumber a,bigNumber b)
{
	bigNumber c;
	int carry=0;
	for(int i=0;i<a.len||i<b.len;i++)
	{
		int temp=(a.d[i]+b.d[i]+carry);//使用临时值是一个好习惯,这里可以不用 
		c.d[i]=temp%10;
		c.len++;
		carry=temp/10;
	}
	if(carry!=0)
	c.d[c.len++]=carry;
	return c;//一定不要忘记返回值 
} 

bigNumber minu(bigNumber a,bigNumber b)
{
	bigNumber c;
	for(int i=0;i<a.len||i<b.len;i++)
	{
		if(a.d[i]<b.d[i])
		{
			a.d[i+1]--;
			c.d[i]=a.d[i]+10-b.d[i];
			c.len++;
		}
		else
		{
			c.d[i]=a.d[i]-b.d[i];
			c.len++;
		}
	}
	//为了防止两个数相同的情况下,会输出0000这样的数,所以我们需要对其进行去零处理
	while(c.len>1&&c.d[c.len-1]==0)//输出长度不能为零,所以长度必须至少有1 
	{
		c.len--;
	} 
	
	return c;
}


//对于乘法而言,每次都是a的一位去乘以b,所得到的结果的个位数作为结果,其余的高位作为进位 
//所以这里将  与每一个位相乘  单独拿出来作为一个函数 
bigNumber multi(bigNumber a,int b)
{
	bigNumber c;
	int carry=0;
	for(int i=0;i<a.len;i++)
	{
		int temp=a.d[i]*b+carry;
		c.d[c.len++]=temp%10;
		carry=temp/10;
	}
	while(carry!=0)
	{
		c.d[c.len++]=carry%10;
		carry/=10;//不要忘记等号。。。。。。 
	}
	return c;
}

bigNumber Multi(bigNumber a,bigNumber b)
{
	bigNumber D;
	for(int i=0;i<b.len;i++)
	{
		D.len=i;
		bigNumber c=multi(a,b.d[i]);
		for(int i=0;i<c.len;i++)
		{
			int temp=D.d[D.len]+c.d[i];
			D.d[D.len]=temp%10;
			D.d[D.len+1]+=temp/10;
			D.len++;
		}		
	}
	return D;
}

//两个大数的除法有点复杂,这里暂且只讨论大数除以某个int整数
//其实思路大同小异,两个大数的除法就是手算的过程,尝试商的过程可以用高精度减法实现,对齐,求减法减为负数的次数,再对齐 
bigNumber divide(bigNumber m,int b,int& r)//b为除数,a为被除数 
{
	bigNumber c;
	c.len=m.len;
	for(int i=m.len-1;i>=0;i--)
	{
		r=r*10+m.d[i];
		if(r<b) c.d[i]=0;//不够除 
		else//够除 
		{
			c.d[i]=r/b;
			r=r%b; 
		}
	}
	//去0
	while(c.len>1&&c.d[c.len-1]==0)//删除到只剩一位或者没有0 
	{
		c.len--;
	} 
	return c;
}


int main()
{
	int x=2;
	int r=0;
	string a="88888888";
	string b="88888888";
	bigNumber test=Transform(a);
	bigNumber test1=Transform(b);
	bigNumber Test=add(test,test1);
	for(int i=Test.len-1;i>=0;i--)
	{
		cout<<Test.d[i];
	}
	cout<<endl;
	bigNumber Test2=minu(test,test1);
	for(int i=Test2.len-1;i>=0;i--)
	{
		cout<<Test2.d[i];
	}
	cout<<endl;
	bigNumber Test3=Multi(test,test1);
	for(int i=Test3.len-1;i>=0;i--)
	{
		cout<<Test3.d[i];
	}
	cout<<endl;
	bigNumber Test4=divide(test,2,r);
	for(int i=Test4.len-1;i>=0;i--)
	{
		cout<<Test4.d[i];
	}
} 


math的常见函数

1.fabs(double x):对double型的变量取绝对值(记得和algorithm中的abs区分开)
2.floor(double x)和ceil(double x): 对double型变量向下取整和向上取整,返回值为double类型
3.pow(double r, double p): 返回值是rp, 要求r和p都是double类型的
4.sqrt(double x): 返回double型变量的算数平方根
5.log(double x): 返回某double型变量的以自然对数为底的对数
注:以任意为底的对数的计算都应该转换成以e为底的对数的计算
6.sin(double x) cos(double x) tan(double x): double变量的正弦余弦正切值
注:弧度制(所以x可以含有π)
7.asin(double x) acos(double x) atan(double x): double型变量的反正弦反余弦反正切值(都是弧度)
8.round(double x): 四舍五入,返回的类型也是double类型,如果取整,那么应该强制类型转换

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值