ZKP11.2 Fiat-Shamir and SNARGs

ZKP学习笔记

ZK-Learning MOOC课程笔记

Lecture 11: From Practice to Theory (Guest Lecturer: Alex Lombardi)

11.2 Fiat-Shamir and SNARGs

  • Succinct Non-Interactive Arguments (SNARGs)
    在这里插入图片描述

    • This class so far: constructions of SNARGs using IOPs and a random oracle.
  • The Fiat-Shamir Transform

    • Powerful, general proposal for removing interaction
      在这里插入图片描述

    • The Random Oracle Model [BR93]

      • Assumption about the structure of an attack on a hash function h
        在这里插入图片描述
    • Fiat-Shamir in the ROM (Random Oracle Model)
      在这里插入图片描述

      • Under such an assumption, h() can be thought of as a random function.
      • In practice, h() is instantiated with (e.g.) SHA256, possibly salted.
      • No matter what, h() is instantiated with a public efficient algorithm
  • Obvious (theoretical) problem: Public efficient algorithms can’t compute random functions

    • Example of an uninstantiable random oracle property [CGH98]
      • Random Oracles Do Not Exist
        在这里插入图片描述

      • For any fixed f, a RO is CI for f.

      • Why? Each query x to the RO produces a random output y, which is equal to f(x) with probability 2 − λ 2^{-\lambda} 2λ.
        在这里插入图片描述

      • Is this a reasonable counterexample?

        • Hash function/random oracle must be able to hash inputs of arbitrary length. CI with bounded inputs might exist!
        • [Barak01,GK03] apply to fixed-input length hash functions.
        • Theorem [Barak ‘01, Goldwasser-Kalai ‘03]: KaTeX parse error: Undefined control sequence: \exsit at position 1: \̲e̲x̲s̲i̲t̲ interactive protocol Π \Pi Π such that Π F S \Pi_{FS} ΠFS is ROM-secure but insecure for any efficiently computable H (e.g. SHA-3).
      • Security property broken by running the hash function on its own description. Is this practically relevant?

        • Recursive SNARKs do something of this flavor
      • Does NOT imply RO-based SNARKs are broken in practice.

        • But it does imply a lack of theoretical understanding.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值