树(组合数学,树的分割)

题意:给出一棵n个节点的树,k种颜料;给每个节点涂上颜色,合法涂色为:当两个节点颜色相同的时候,两节点路径上的节点都为该种颜色。问有多少种合法涂色( m o d 1 e 9 + 7 mod 1e9+7 mod1e9+7)。

思路:首先我们得从 k k k种颜色中选 i i i种颜色用来涂色( A k i A_k^i Aki);对这棵树涂上 i i i种颜色的方法为从 n − 1 n-1 n1条边中选出 i − 1 i-1 i1条删除,得到 i i i个连通块,对每个连通块上色得到 i i i种颜色得方案数( C n − 1 i − 1 C_{n-1}^{i-1} Cn1i1);

解释一下,当得到i个联通块时要不要对 i i i种颜色进行选择(将 i i i种颜色对应到各个联通块)。
我们可以先考虑切割树,得到i个联通块(无顺序 C n − 1 i − 1 C_{n-1}^{i-1} Cn1i1),再在k种颜色中选出i中颜色(有顺序 A k i A_k^i Aki)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod = 1e9+7;
const int N = 310;
int n, m;
ll inv[N] = {1, 1}, vx[N] = {1, 1};
//快速幂
ll qpow(ll x, ll y) {
    ll res = 1;
    while(y) {
        if(y & 1) res = res * x % mod;
        x = x * x % mod;
        y >>= 1;
    }
    return res % mod;
}
//组合数学
ll C(int x, int y) {
    return vx[x]*inv[y]%mod*inv[x-y]%mod;
}
ll  A(int x, int y) {
    return vx[x]*inv[x-y]%mod;
}

void init() {
    for(int i=2; i<N; i++) vx[i] = vx[i-1] * i % mod;//阶乘
    inv[N-1] = qpow(vx[N-1], mod-2);//费马小定理求逆元
    for(int i=N-2; i>=0; i--) {//阶乘递推求逆元
        inv[i] = (i+1)*inv[i+1] % mod;
    }
}
ll solve() {
    int u = min(n, m);
    ll ans = 0;
    for(int i=1; i<=u; i++) {
        ans = (ans + C(n-1, i-1)*A(m, i) % mod) % mod;
    }
    return ans % mod;
}
int main() {
    init();
    int x, y;
    cin >> n >> m;
    for(int i=1; i<n; i++) cin >> x >> y;
    cout << solve();
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值