Photo-Sketching: Inferring Contour Drawings from Images
Year: 2019
Paper link
Github link
Project link
文章目录
简述
- 本文任务近似于边缘检测任务,从真实图像中提取出轮廓线(即Contour Drawing);同时也可以通过从迁移任务理解,将真实图像转换为轮廓线草图。不同于边缘检测任务,本文是通过在数据集上学习的方法,故而网络学习到了一些数据集中人类的一些关注能力,不向边缘检测任务只是关注pixel的变化,而是有选择的关注图像中的主体部分。这一比较可以查看下面Figure 1。
- 收集了一个5000张图像的数据集。 具体方式是首先从Adobe Stock网站找了1000张真实的户外图像,然后去Amazon Mechanical Turk众包平台,让劳动力对每一张真实图像描绘轮廓图。一张真实图像对应5张轮廓图
- 采用cGAN架构。首先加入任务损失,即由真实图像转换得到的草图与ground truths的L1损失。其次针对数据集的这种一对多情况,将 ( x i , y i 1 , y i 2 , … , y i M i ) (x_i, y_i^{1},y_i^{2},\dots,y_i^{M_i}) (xi,yi1,yi2,…,yiMi</