基于V2X多智能车辆系统控制仿真分析入门-基础知识之图论

文章介绍了图论作为基础工具在多智能车辆仿真中的重要性,特别是用于描述车辆间的通信链路和编队控制。通过图1.1展示了车辆通信链路,图1.2和图1.3分别解释了有向图和无向图的概念,强调了入度和出度在分析中的关键作用。
摘要由CSDN通过智能技术生成

多智能车辆的仿真入门分析涉及到一些基础知识,按照如下图的章节安排,首先是图论的基础知识
在这里插入图片描述

图论为实际的车辆之间的通信链路建立数学模型提供了理论基础。如图1.1所示的车辆之间的通信链路,如何描述这种通信链路并抽象成数学模型。图论是最佳选择。
在这里插入图片描述

图1.1 车辆之间通信链路

图论是基于一致性的车辆编队控制研究中一个非常重要的工具,应用图论可表示车联网环境下车车间通信的拓扑关系,下面我们给出图论的基础知识和一些有用的结论。假设用G=(V,E)描述一个图, 其中V={V1,V2,V3…….Vn}为顶点的集合,E={E1,E2,E3……En}表示由节点与节点组成的边集。

      ![在这里插入图片描述](https://img-blog.csdnimg.cn/84ac8a13643640c4960c5895589110d4.jpeg#pic_center)

           图1.2 有向图        

在这里插入图片描述

                         图1.3 无向图

如图1.2和图1.3所示,节点为{1,2,3,4,5},在图2上,节点2和节点3之间就是边,用符号E表示。通俗的讲,有方向的就是有向图,如图2所示。无方向的就是无向图,如图3所示。在有向图中,对于任意节点p,指向该节点的边的节点数目即为该点的入度:类似的,从该节点出发的边的数量称为该点的出度。以图2为例,节点2的入度是2(节点1指向节点2,节点3指向节点2)。节点2的出度为1(节点2指向节点4)。入度是一个非常重要的概念,在后面的矩阵分析中有非常重要的作用,需要重点关注。图论中还有其余的概念在智能车辆中使用不多,具体可参照相关资料介绍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

车农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值