粒子群优化算法(PSO)

目录

一、算法基本流程

1.1算法概述

1.2 算法流程图

二、代码实现

三、结果分析


一、算法基本流程

1.1算法概述

粒子群优化(PSO, particle swarm optimization)算法是计算智能领域,除了蚁群算法,鱼群算法之外的一种群体智能的优化算法,该算法最早由Kennedy和Eberhart在1995年提出的,该算法源自对鸟类捕食问题的研究。

算法步骤:

 (1)初始化所有的微粒,包括它们的位置和速度,把个体的历史最优pBest设为当前位置,群体的最优个体作为当前的gBest;
 (2)每一代的进化中,计算每个粒子的适应度函数值;
 (3)对每个微粒,将它的适应值和它经历过的最好位置pbest的作比较,如果较好,则将其作为当前的最好位置pBest;
 (4)对每个微粒,将它的适应值和全局所经历最好位置gbest的作比较,如果较好,则重新设置gBest的索引号;
 (5)变化微粒的速度和位置;
 (6)如未达到结束条件(通常为足够好的适应值或达到一个预设最大代数Gmax) ,回到(2),否则输出gBest并结束。
 

  在每一次迭代过程中,粒子通过个体极值和群体极值更新自身的速度和位置,更新公式 如下:

 

 

1.2 算法流程图

 

 

 

二、代码实现

PSO.m


%% 清空环境
clc
clear

%% 参数初始化
%粒子群算法中的三个参数
c1 = 1.49445;%加速因子
c2 = 1.49445;
w=0.8   %惯性权重

maxgen=1000;   % 进化次s数  
sizepop=200;   %种群规模

Vmax=1;       %限制速度围
Vmin=-1;     
popmax=5;    %变量取值范围
popmin=-5;
dim=10;       %适应度函数维数

func=1;       %选择待优化的函数,1为Rastrigin,2为Schaffer,3为Griewank
Drawfunc(func);%画出待优化的函数,只画出二维情况作为可视化输出

%% 产生初始粒子和速度
for i=1:sizepop
    %随机产生一个种群
    pop(i,:)=popmax*rands(1,dim);    %初始种群
    V(i,:)=Vmax*rands(1,dim);             %初始化速度
                                     %计算适应度
    fitness(i)=fun(pop(i,:),func);   %粒子的适应度
end

%% 个体极值和群体极值
[bestfitness bestindex]=min(fitness);
gbest=pop(bestindex,:);   %全局最佳
pbest=pop;                %个体最佳
fitnesspbest=fitness;     %个体最佳适应度值
fitnessgbest=bestfitness; %全局最佳适应度值

%% 迭代寻优
for i=1:maxgen
    
    fprintf('第%d代,',i);
    fprintf('最优适应度%f\n',fitnessgbest);
    for j=1:sizepop
        
        %速度更新
        V(j,:) = w*V(j,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:)); %根据个体最优pbest和群体最优gbest计算下一时刻速度
        V(j,find(V(j,:)>Vmax))=Vmax;   %限制速度不能太大
        V(j,find(V(j,:)<Vmin))=Vmin;
        
        %种群更新
        pop(j,:)=pop(j,:)+0.5*V(j,:);       %位置更新
        pop(j,find(pop(j,:)>popmax))=popmax;%坐标不能超出范围
        pop(j,find(pop(j,:)<popmin))=popmin;
        
        if rand>0.98                         %加入变异种子,用于跳出局部最优值
            pop(j,:)=rands(1,dim);
        end
        
        %更新第j个粒子的适应度值
        fitness(j)=fun(pop(j,:),func); 
   
    end
    
    for j=1:sizepop
        
        %个体最优更新
        if fitness(j) < fitnesspbest(j)
            pbest(j,:) = pop(j,:);
            fitnesspbest(j) = fitness(j);
        end
        
        %群体最优更新
        if fitness(j) < fitnessgbest
            gbest = pop(j,:);
            fitnessgbest = fitness(j);
        end
    end 
    yy(i)=fitnessgbest;    
        
end
%% 结果分析
figure;
plot(yy)
title('最优个体适应度','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);

 Rastrigin.m

图像为:

 

function y = Rastrigin(x)
% Rastrigin函数
% 输入x,给出相应的y值,在x = ( 0 , 0 ,…, 0 )处有全局极小点0.
% 编制人:
% 编制日期:
[row,col] = size(x);
if  row > 1 
    error( ' 输入的参数错误 ' );
end
y =sum(x.^2-10*cos(2*pi*x)+10);
%y =-y;

 Schaffer.m

函数写法:

此函数在(0,...,0)处有最大值1,因此不需要取相反数。

图像为:

 

function y=Schaffer(x)

[row,col]=size(x);
if row>1
    error('输入的参数错误');
end
y1=x(1,1);
y2=x(1,2);
temp=y1^2+y2^2;
y=0.5-(sin(sqrt(temp))^2-0.5)/(1+0.001*temp)^2;
%y=-y;

Griewank.m

图像为:

 

function y=Griewank(x)
%Griewan函数
%输入x,给出相应的y值,在x=(0,0,…,0)处有全局极小点0.
%编制人:
%编制日期:
[row,col]=size(x);
if row>1
    error('输入的参数错误');
end
y1=1/4000*sum(x.^2);
y2=1;
for h=1:col
    y2=y2*cos(x(h)/sqrt(h));
end
y=y1-y2+1;
%y=-y;

 

fun.m

函数用于计算粒子适应度值,选择待优化的函数,1为Rastrigin,2为Schaffer,3为Griewank

function y = fun(x,label)

%x           input           输入粒子 
%y           output          粒子适应度值 
if label==1
    y=Rastrigin(x);
elseif label==2
    y=Schaffer(x);
else
    y= Griewank(x);
end

fun1.m 

function y = fun1(x)
%函数用于计算粒子适应度值
%x           input           输入粒子 
%y           output          粒子适应度值 

y=-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+exp(1);

%y=x(1)^2-10*cos(2*pi*x(1))+10+x(2)^2-10*cos(2*pi*x(2))+10;

 

Drawfunc.m

画出待优化的函数,只画出二维情况作为可视化输出 

function Drawfunc(label)

x=-5:0.05:5;%41列的向量
if label==1
    y = x;
    [X,Y] = meshgrid(x,y);
    [row,col] = size(X);
    for  l = 1 :col
         for  h = 1 :row
            z(h,l) = Rastrigin([X(h,l),Y(h,l)]);
        end
    end
    surf(X,Y,z);
    shading interp
    xlabel('x1-axis'),ylabel('x2-axis'),zlabel('f-axis'); 
    title('mesh'); 
end

if label==2
    y = x;
    [X,Y] = meshgrid(x,y);
    [row,col] = size(X);
    for  l = 1 :col
         for  h = 1 :row
            z(h,l) = Schaffer([X(h,l),Y(h,l)]);
        end
    end
    surf(X,Y,z);
    shading interp 
    xlabel('x1-axis'),ylabel('x2-axis'),zlabel('f-axis'); 
    title('mesh'); 
end

if label==3
    y = x;
    [X,Y] = meshgrid(x,y);
    [row,col] = size(X);
    for  l = 1 :col
         for  h = 1 :row
            z(h,l) = Griewank([X(h,l),Y(h,l)]);
        end
    end
    surf(X,Y,z);
    shading interp 
    xlabel('x1-axis'),ylabel('x2-axis'),zlabel('f-axis'); 
    title('mesh'); 
end



    

PSOMutation.m


%% 清空环境
clc
clear

%% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;

maxgen=500;   % 进化次数  
sizepop=100;   %种群规模

Vmax=1;
Vmin=-1;
popmax=5;
popmin=-5;

%% 产生初始粒子和速度
for i=1:sizepop
    %随机产生一个种群
    pop(i,:)=5*rands(1,2);    %初始种群
    V(i,:)=rands(1,2);  %初始化速度
    %计算适应度
    fitness(i)=fun(pop(i,:));   %染色体的适应度
end

%% 个体极值和群体极值
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:);   %全局最佳
gbest=pop;    %个体最佳
fitnessgbest=fitness;   %个体最佳适应度值
fitnesszbest=bestfitness;   %全局最佳适应度值

%% 迭代寻优
for i=1:maxgen
    
    for j=1:sizepop
        
        %速度更新
        V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
        V(j,find(V(j,:)>Vmax))=Vmax;
        V(j,find(V(j,:)<Vmin))=Vmin;
        
        %种群更新
        pop(j,:)=pop(j,:)+0.5*V(j,:);
        pop(j,find(pop(j,:)>popmax))=popmax;
        pop(j,find(pop(j,:)<popmin))=popmin;
        
        if rand>0.98     
            pop(j,:)=rands(1,2);
        end
        
        %适应度值
        fitness(j)=fun(pop(j,:)); 
   
    end
    
    for j=1:sizepop
        
        %个体最优更新
        if fitness(j) < fitnessgbest(j)
            gbest(j,:) = pop(j,:);
            fitnessgbest(j) = fitness(j);
        end
        
        %群体最优更新
        if fitness(j) < fitnesszbest
            zbest = pop(j,:);
            fitnesszbest = fitness(j);
        end
    end 
    yy(i)=fitnesszbest;    
        
end
%% 结果分析
plot(yy)
title('最优个体适应度','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);

 

三、结果分析

POS.m运行结果

最优个体适应度最接近于零时算法达到很好

 

算法中的参数:

 

%粒子群算法中的三个参数
加速因子
c1 向自身推进的加速权值
c2 向全局推进的加速权值
w  惯性权重

sizepop 种群规模

dim 适应度函数维数

 

初始时设置:c1 = 1.49445,c2 = 1.49445,w = 0.8,sizepop=200,dim=10

(1)c1 = 1.49445,c2 = 1.49445,sizepop=200,dim=10,改变惯性权重的值  w

w适应度平均值
0.83.581852
0.72.586893
0.62.967745
0.41.893848

w关系到前一速度对当前速度的影响,一般取值在0.9~0.4。因初始种群是随机产生的,当权重w固定为某一个值的时候,我们可以用多次结果取平均值的方法来处理数据。

(2)利用线性递减的函数设置w从0.9到0.4变化,观察记录这时多个结果不同

 典型线性递减策略的w计算公式如下:

w=wmax-(wmax-wmin)\times t\div maxgen

其中 wmax是惯性权重最大值,wmin是惯性权重最小值,t 是当前迭代次数,是个变量,

maxgen是总共迭代次数,是常量,实验中取 1000。

当初始迭代时,惯性权重w比较大,反应在速度v的计算公式上(V(j,:) = w*V(j,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:)))可以看出初始迭代的时候粒子的速度比较大,具有很好的全局搜索能力,而局部搜索能力较弱。随着迭代次数的累加,w的值越来越小,粒子的速度也越来越小,此时粒子具有很好的局部搜索能力,而全局搜索能力较弱。但是由于斜率恒定,所以速度的改变总是保持同一水平。

 12345678910平均适应度
13.9798363.97983601.9899182.5383814.9747956.96471305.9697544.9747953.537203
200.0000090.9949625.9697543.979836004.9747954.9771370.9950122.189151
30.9949596.9647134.9747951.0481674.9747955.9697540.9949593.9914312.9848772.9848773.588333

 

在迭代寻找最优的代码循环里利用公式来取惯性权重w:

%% 迭代寻优
for i=1:maxgen
    
    fprintf('第%d代,',i);
    fprintf('最优适应度%f\n',fitnessgbest);
    for j=1:sizepop
        
        %速度更新
        V(j,:) = w*V(j,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:)); %根据个体最优pbest和群体最优gbest计算下一时刻速度
        V(j,find(V(j,:)>Vmax))=Vmax;   %限制速度不能太大
        V(j,find(V(j,:)<Vmin))=Vmin;
        
        %种群更新
        pop(j,:)=pop(j,:)+0.5*V(j,:);       %位置更新
        pop(j,find(pop(j,:)>popmax))=popmax;%坐标不能超出范围
        pop(j,find(pop(j,:)<popmin))=popmin;
        
        if rand>0.98                         %加入变异种子,用于跳出局部最优值
            pop(j,:)=rands(1,dim);
        end
        
        %更新第j个粒子的适应度值
        fitness(j)=fun(pop(j,:),func); 
   
    end
    
    for j=1:sizepop
        
        %个体最优更新
        if fitness(j) < fitnesspbest(j)
            pbest(j,:) = pop(j,:);
            fitnesspbest(j) = fitness(j);
        end
        
        %群体最优更新
        if fitness(j) < fitnessgbest
            gbest = pop(j,:);
            fitnessgbest = fitness(j);
        end
    end 
    yy(i)=fitnessgbest;   
    w=wmax-(wmax-wmin)*i/1000;
        
end

 

 线性微分递减策略的w的计算公式如下:

w=wmax-(wmax-wmin)\times t^{2}\div maxgen^{2}

初始迭代的时候,w变化缓慢,有利于在初始迭代时寻找满足条件的局部最优值,在接近最大迭代次数时,w变化较快,在寻找到局部最优值之后能够快速地收敛逼近于全局最优值,提高运算效率。

(3)其他参数不变,只改变适应度函数维度dim:

dim最优适应度收敛(次)
50469
60697
80752
100483

 

pop(i,:)=popmax*rands(1,dim);    %初始种群
V(i,:)=Vmax*rands(1,dim);             %初始化速度

适应度函数维度用于初始化种群和速度,以及后面若是算法陷入局部最优时加入的变异因子。当dim越大,初始种群和速度比较大的几率高。实验取dim=5或者dim=10时迭代收敛得比较快。 

(4)其他参数不变,只c1、c2改变

适应度c2=1.08324c2=1.49445c2=1.99857
c1=1.083243.9798360.9949593.979836
c1=1.494453.9798361.9899184.974795
c1=1.998575.9697632.9848771.989918

可以看出在此目标函数中,相对三个取值中,c1取1.08324,c2取1.49445,适应度的值更接近于0。

(5)其他参数不变,改变种群规模sizepop

sizepop最优适应度达到最优适应度时收敛次数总用时
10003756.041 s
20005308.334 s
300011512.173 s
40008714.392 s
500052318.376 s
600023920.882 s

   种群规模sizepop影响算法的搜索能力和计算量。当种群规模越大时,达到最优适应度所用的时间越长,此目标函数中种群规模设置在300或400时达到最优适应度时收敛次数比较小,算法效果较好。

 

 

 

 

 

 

 

 

 

  • 6
    点赞
  • 43
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
以下是一个简单的粒子群优化算法PSO)的代码示例: ``` import random class Particle: def __init__(self, x0): self.position = [] self.velocity = [] self.best_position = [] self.fitness = -1 for i in range(0, num_dimensions): self.velocity.append(random.uniform(-1, 1)) self.position.append(x0[i]) def evaluate(self, cost_function): self.fitness = cost_function(self.position) if self.fitness < self.best_fitness: self.best_fitness = self.fitness self.best_position = self.position def update_velocity(self, best_global_position): w = 0.5 c1 = 1 c2 = 2 for i in range(0, num_dimensions): r1 = random.random() r2 = random.random() cognitive_velocity = c1 * r1 * (self.best_position[i] - self.position[i]) social_velocity = c2 * r2 * (best_global_position[i] - self.position[i]) self.velocity[i] = w * self.velocity[i] + cognitive_velocity + social_velocity def update_position(self, bounds): for i in range(0, num_dimensions): self.position[i] = self.position[i] + self.velocity[i] if self.position[i] > bounds[i][1]: self.position[i] = bounds[i][1] if self.position[i] < bounds[i][0]: self.position[i] = bounds[i][0] class PSO: def __init__(self, cost_function, x0, bounds, num_particles, max_iterations): global num_dimensions num_dimensions = len(x0) best_global_position = [] best_global_fitness = -1 swarm = [] for i in range(0, num_particles): swarm.append(Particle(x0)) for i in range(0, max_iterations): for j in range(0, num_particles): swarm[j].evaluate(cost_function) if swarm[j].fitness < best_global_fitness: best_global_fitness = swarm[j].fitness best_global_position = list(swarm[j].position) for j in range(0, num_particles): swarm[j].update_velocity(best_global_position) swarm[j].update_position(bounds) print('Best position:', best_global_position) print('Best fitness:', best_global_fitness) def cost_function(x): return sum([i**2 for i in x]) bounds = [(-10, 10), (-10, 10), (-10, 10)] PSO(cost_function, x0=[0, 0, 0], bounds=bounds, num_particles=15, max_iterations=30) ``` 这个代码演示了如何使用 PSO 来最小化一个简单的函数。需要注意的是,这个示例只展示了基本的 PSO 实现,实际上,PSO 还有很多改进和扩展,例如变异粒子群优化算法(MPSO)、共生进化粒子群优化算法(CEPSO)等等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值