Dify+AstrBot助力企业无门槛使用AI

阅读本文前,不妨思考:在企业使用大模型时,是否遭遇过技术门槛高,导致部署和应用困难重重?多人协作使用时,网络问题是否频繁出现,影响使用体验和工作效率?从集成角度看,将大模型集成到企业现有的信息平台,是不是常因复杂的接口和架构而难以推进?

带着这些问题阅读文章,你会发现 AstrBot 在解决上述痛点上的独特优势,如松耦合、异步处理特性,多消息平台部署能力,以及与 Dify 集成的便捷方式,这些都为企业有效利用大模型提供了新的思路和解决方案。

一、AstrBot 简介

AstrBot 是一个易于上手的多平台聊天机器人及开发框架。通过它,你能够在多种消息平台上部署一个支持大语言模型(LLM)的聊天机器人。并以此实现但不限于 AI 知识库问答、角色扮演、群聊管理、LLM Agent 等功能。它有如下特性

  • 松耦合:AstrBot 历经 3 次大代码重构。每一次都在向着松耦合、模块化的方向迈进。目前,AstrBot 采用了事件总线和消息事件流水线的架构设计,实现近乎完全的模块化。
  • 异步:AstrBot 采用了异步编程模型,使得 AstrBot 在处理多个消息平台的消息时,能够更加高效。
  • 多消息平台部署:AstrBot 默认支持接入 QQ、QQ频道、微信。通过插件,还可以接入 Telegram 等任何消息平台。
  • 完善的插件系统:AstrBot 提供了完善、及其易于上手的插件系统,你可以通过插件实现自己的功能。开发一个插件,只需要几行代码。

二、使用AstrBot的目标

一人部署dify完成agent/workflow等设置,所有人可以在飞书/钉钉/企微等(见文末)机器人中正常使用。

  • 不用再考虑网络问题

  • 一人部署多人使用

  • 快速集成到企业信息平台

三、AstrBot的部署

docker compose 部署

git clone https://github.com/Soulter/AstrBot
cd AstrBot
touch /etc/timezone
docker compose up -d  或者 docker-compose up -d

如果出现 error mounting "/etc/timezone" to ro otfs at "/etc/timezone" 的 报错,就是没执行 touch /etc/timezone 命令

部署成功后,astrbot的页面端口为6185 ,默认账号密码为 astrbot

四、创建机器人

这里以飞书机器人为例,其他机器人可以参考astrbot官网

工作台–>创建应用–>创建企业自建应用。

创建后,添加机器人能力。

复制应用的app ID 与 app Secret,后面添加给astrbot会用到。

打开 AstrBot 管理面板->配置页->消息平台适配器->+,创建一个飞书(Lark)适配器。

将刚刚复制的 app_id 和 app_secret 填入。以及飞书机器人的名字。

如果您正在用国际版飞书,请将 domain 设置为 https://open.larksuite.com

然后点击右下角保存配置,等待重启成功。

上一步成功后,设置飞书应用的事件与回调。

点击添加事件,消息与群组,下拉找到 接收消息,添加。

开通以下权限

再点击上面的保存按钮。

接下来,点击权限管理,点击开通权限,输入 im:message:send,im:message,im:message:send_as_bot。添加筛选到的权限。

再次输入 im:resource:upload,im:resource 开通上传图片相关的权限。

最终开通的权限如下图:

最后创建版本。

五、AstrBot接入dify

astrbot支持Dify的三种类型

  • chat
  • agent
  • workflow

下面,以agent为例,在agent里找到base api 与api key ,如下图:

回到astrbot中,在服务供应商添加dify连接信息。

依次填写配置信息。

保存即可。至此所有配置都完成了,接下来看看成果。

六、AstrBot与飞书使用效果

在飞书的群组里,搜索添加之前创建的机器人。

在群里的任何人都可以通过艾特机器人的方式来与agent交互,案例中是一个知识库的agent,

如果你有兴趣,或者已经在用Dify了,欢迎添加作者微信,我们组织了一个Dify交流群,欢迎来提问或者分享你的经验。

七、AstrBot总结与能力map

AstrBot的能力不仅限于本文演示的内容,还能接入更多大模型服务平台,执行函数、文字转语言等能力。

比较看重的是它能够把大模型开发工具与企业信息平台连接起来,极大的减轻了企业中其他人使用的成本。

以下是 AstrBot 目前对消息平台的支持情况:

平台支持性详情消息类型
QQ(官方机器人接口)私聊、群聊,QQ 频道私聊、群聊文字、图片
QQ(OneBot)私聊、群聊文字、图片、语音
微信(个人号)微信个人号私聊、群聊文字、图片、语音
Telegram私聊、群聊文字、图片
微信(企业微信)私聊文字、图片、语音
飞书私聊、群聊文字、图片
钉钉私聊、群聊文字、图片
微信对话开放平台🚧计划内-
Discord🚧计划内-
WhatsApp🚧计划内-
小爱音响🚧计划内-

以下是AstrBot 提供商支持情况:

名称支持性类型备注
OpenAI API文本生成同时也支持 DeepSeek、Google Gemini、GLM(智谱)、Moonshot(月之暗面)、阿里云百炼、硅基流动、xAI 等所有兼容 OpenAI API 的服务
Claude API文本生成
Google Gemini API文本生成
DifyLLMOps
DashScope(阿里云百炼应用)LLMOps
Ollama模型加载器本地部署 DeepSeek、Llama 等开源语言模型
LM Studio模型加载器本地部署 DeepSeek、Llama 等开源语言模型
LLMTuner模型加载器本地加载 lora 等微调模型
OneAPILLM 分发系统
Whisper语音转文本支持 API、本地部署
SenseVoice语音转文本本地部署
OpenAI TTS API文本转语音
Fishaudio文本转语音GPT-Sovits 作者参与的项目
Edge-TTS文本转语音Edge 浏览器的免费 TTS
### Dify 和 DeepSeek 在企业知识库中的解决方案实现方法 #### 1. 技术架构概述 Dify 是一种专注于企业知识管理的工具,能够帮助企业自动处理和维护内部数据源。其核心功能在于自动化地更新、分类、存储以及高效检索知识[^1]。而 DeepSeek 则是一种大语言模型 (LLM),擅长于复杂的信息分析与推理能力,在提供精准答案的同时还展示了详细的思考过程[^3]。 两者的结合可以为企业构建一个强大且灵活的知识管理系统。具体来说,Dify 提供了一个结构化的框架来管理和组织来自不同渠道的数据;与此同时,DeepSeek 增强了系统的智能化水平,使得该系统不仅限于简单的信息查询,还可以完成更深层次的任务如逻辑推导或趋势预测。 #### 2. 集成方式说明 为了成功实施这一联合方案,通常需要按照如下方式进行配置: - **安装并初始化 Ollama**: 这是一个轻量级的服务端程序,用于托管各种大型预训练模型(LPMs),其中包括但不限于 DeepSeek 家族成员。通过设置 API 接口参数,可以让其他应用程序轻松调用这些 AI 功能。 ```bash docker run --rm -p 11434:11434 ollama/ollama serve ``` - **引入 DeepSeek 至项目环境**: 下载所需版本的 DeepSeek 模型文件至本地服务器上,并确保它们被正确加载到运行时环境中以便随时响应请求。 ```python from deepseek import generate_text result = generate_text(prompt="请解释量子计算基本原理", max_length=500) print(result['generated_text']) ``` - **连接 Dify 平台服务**: 注册账户之后登录后台管理系统界面,创建新的应用实例并将上述提到的人工智能组件绑定进去形成闭环生态体系。此外还需要定义好各个字段之间的映射关系以保障整体流程顺畅无阻塞现象发生。 #### 3. 应用场景举例 当这套完整的基础设施搭建完毕以后,就可以投入到具体的业务环节当中去了。比如在一个跨国制药集团里边,科研人员每天都要面对海量的专业文献资料,这时候如果借助我们所描述的技术栈,则可以从以下几个方面带来显著改善效果: - 自动摘要生成:快速提炼每篇论文的核心要点; - 关键词提取标注:帮助建立统一标准术语表便于后续统计分析工作开展; - 类似案例推荐引擎:基于历史积累发现潜在关联线索从而加速新药研发进度等等[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值