AstrBot:轻松将大模型接入QQ、微信等消息平台,打造多功能AI聊天机器人的开发框架,附详细教程

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


大家好,我是蚝油菜花,今天跟大家分享一下 AstrBot 这个开源的多消息平台聊天机器人及开发框架。

🚀 快速阅读

AstrBot 是一个多平台聊天机器人及开发框架,支持多种大语言模型和消息平台。

  1. 核心功能:支持 OpenAI GPT、Google Gemini、Llama 等大语言模型,以及 QQ、Telegram、微信等消息平台。
  2. 技术原理:基于异步通信架构、事件驱动机制和流水线处理,确保高效稳定的系统性能。

AstrBot 是什么

AstrBot

AstrBot 是一个开源的多平台聊天机器人及开发框架,支持多种大语言模型(如 OpenAI GPT、Google Gemini、Llama 等)和多种消息平台(如 QQ、Telegram、微信等)。它具备多轮对话、语音转文字、网页搜索等功能,提供代码执行器和可视化管理面板,方便用户配置和扩展。

AstrBot 基于模块化设计,支持插件开发,能一键部署到多种环境(如 Docker、Windows、Replit 等),具有高稳定性和可扩展性。

AstrBot 的主要功能

  • 多语言模型支持:支持 OpenAI GPT、Google Gemini、Llama、DeepSeek、ChatGLM 等多种大语言模型,且支持基于 Ollama 和 LLMTuner 接入本地部署的大模型。
  • 多平台接入:支持 QQ(OneBot)、QQ频道、微信(Gewechat、企业微信)、Telegram 等消息平台,后续将支持钉钉、飞书、Discord 等。
  • Agent 功能:原生支持代码执行器、自然语言待办事项、网页搜索等功能,能对接 Dify 平台,实现智能助手和知识库的接入。
  • 插件扩展:提供深度优化的插件机制,支持开发者基于插件扩展功能,降低开发门槛。
  • 可视化管理:提供可视化面板,支持配置修改、插件管理、日志查看等功能,集成 WebChat,在面板上与机器人直接对话。
  • 多模态交互:支持图片理解和语音转文字(Whisper),具备多轮对话和人格情境功能。

AstrBot 的技术原理

  • 异步通信架构:基于异步编程模型,高效处理多平台的消息交互,提升系统响应速度和并发处理能力。
  • 事件驱动机制:基于事件总线设计,将消息接收、处理和发送解耦,让各个模块独立运行,提高系统的灵活性和可扩展性。
  • 流水线处理:消息处理采用流水线模式,将消息解析、预处理、模型调用、后处理等步骤按顺序执行,便于功能扩展和维护。
  • 插件系统:基于插件机制,开发者能轻松扩展机器人功能。插件支持独立开发和部署,不影响主程序运行。
  • 多语言模型接入:支持多种大语言模型的接入,基于标准化的接口与不同模型进行通信,实现灵活的模型切换和扩展。

如何使用 Docker 部署 AstrBot

环境准备

在开始部署 AstrBot 之前,请确保您的环境中已经安装了 Docker。如果尚未安装,请参考Docker 文档进行安装。

如果您在中国大陆,可能无法正常拉取 Docker 镜像。建议使用国内镜像源,或者在 Docker 设置中配置代理。可以参考国内可用 Docker 镜像源汇总

通过 Docker Compose 部署

1. 克隆 AstrBot 仓库

首先,使用以下命令将 AstrBot 仓库克隆到本地:

git clone https://github.com/Soulter/AstrBot
cd AstrBot
2. 运行 Docker Compose

接下来,使用 docker compose 命令启动 AstrBot:

sudo docker compose up -d
  • 注意:在 Windows 系统上不需要使用 sudo
3. 配置沙箱代码执行器(可选)

默认情况下,docker-compose.yml 文件没有映射宿主机的 docker.sock 文件,因此无法使用沙箱代码执行器。如果您需要使用沙箱代码执行器,可以在 docker-compose.yml 文件中添加以下内容:

volumes:
  - /var/run/docker.sock:/var/run/docker.sock

通过 Docker 部署

1. 创建目录并运行容器

如果您不想使用 Docker Compose,可以直接通过 Docker 命令来部署 AstrBot。首先,创建一个目录用于存储数据:

mkdir astrbot

然后,使用以下命令启动 AstrBot 容器:

sudo docker run -itd -p 6180-6200:6180-6200 -p 11451:11451 -v $PWD/data:/AstrBot/data --name astrbot soulter/astrbot:latest
  • 注意:在 Windows 系统上不需要使用 sudo
2. 查看日志

通过以下命令查看 AstrBot 的日志输出:

sudo docker logs -f astrbot
3. 配置沙箱代码执行器(可选)

如果您需要使用沙箱代码执行器,可以在启动容器时添加以下参数:

sudo docker run -itd -p 6180-6200:6180-6200 -p 11451:11451 -v $PWD/data:/AstrBot/data -v /var/run/docker.sock:/var/run/docker.sock --name astrbot soulter/astrbot:latest

🎉 大功告成!

如果一切顺利,您会在日志中看到类似以下的输出:

🌈 管理面板已启动,可访问

接下来,您可以打开浏览器,访问日志中提供的链接来访问 AstrBot 的管理面板。默认的用户名和密码都是 astrbot

  • 提示:由于 Docker 隔离了网络环境,因此不能使用 localhost 访问管理面板。请使用您的服务器 IP 地址或域名进行访问。

如何运行 AstrBot 管理面板

1. 管理面板概述

AstrBot 管理面板是一个功能强大的工具,提供了管理插件、查看日志、可视化配置和查看统计信息等功能。通过管理面板,用户可以方便地管理和监控 AstrBot 的运行状态。下图展示了管理面板的界面,其中显示了占用内存为 1GB,这是因为在该时刻 AstrBot 加载了一个自部署的微调大语言模型。

AstrBot 管理面板

2. 访问管理面板

2.1 本地访问

当启动 AstrBot 之后,你可以通过浏览器访问 http://localhost:6185 来访问管理面板。

2.2 云服务器访问

如果你正在云服务器上部署 AstrBot,需要将 localhost 替换为你的服务器 IP 地址。例如,如果你的服务器 IP 地址是 192.168.1.100,则访问地址为 http://192.168.1.100:6185

3. 登录

默认的用户名和密码均为 astrbot。首次登录后,建议修改默认的用户名和密码以增强安全性。

4. 可视化配置

在管理面板中,你可以通过可视化配置来管理 AstrBot 的插件。点击左栏的 配置 即可进入配置页面。

AstrBot-ini

顶部的两个按钮可以切换 可视化编辑配置代码编辑配置 两种模式。

  • 可视化编辑配置:通过图形界面进行配置,修改完成后需要点击右下角的 保存 按钮来保存配置。
  • 代码编辑配置:直接编辑配置文件,编辑完成后首先点击 应用此配置,此时配置将应用到可视化配置中,然后再点击右下角的 保存 按钮来保存配置。

AstrBot-save

  • 警告:在 代码编辑配置 中编辑配置文件时,如果你不点击 应用此配置,那么你的修改将不会生效。

5. 插件管理

在管理面板中,你可以通过左栏的 插件 来查看已安装的插件。点击右下角的添加按钮,可以安装新的插件。

AstrBot-plugin

6. 更新管理面板

AstrBot 在启动时会自动检查管理面板是否需要更新。如果需要更新,第一条日志(黄色)会提示你进行更新。

6.1 手动更新

你可以使用 /dashboard_update 命令手动更新管理面板。该命令是管理员指令,只有管理员用户可以执行。

6.2 手动替换更新

如果你需要手动替换管理面板文件,可以在AstrBot GitHub Releases下载 dist.zip,然后解压到 data/dist 目录下。

7. 常见问题

7.1 无法访问管理面板

如果你无法访问管理面板,可能是由于以下原因:

  • 确保 AstrBot 已正确启动。
  • 检查是否使用了正确的 IP 地址和端口。
  • 如果在云服务器上部署,确保服务器防火墙已允许 6185 端口的访问。
7.2 更新后管理面板无法正常工作

如果你在更新管理面板后遇到问题,建议尝试以下步骤:

  • 检查日志文件,查看是否有错误信息。
  • 确保 data/dist 目录下的文件已正确解压。
  • 重新启动 AstrBot,确保更新生效。

通过以上步骤,你可以轻松管理和配置 AstrBot,确保其稳定运行并充分发挥其功能。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

### 关于 AstrBot 的 Python 库或项目 AstrBot 并不是一个广泛使用的标准术语或者知名开源项目名称,因此可能需要进一步澄清具体需求。然而,在涉及机器人开发、自动化脚本编写以及网络爬虫等领域时,Python 提供了许多强大的工具和框架来支持这些功能。 以下是几个可能与 AstrBot 功能相关的领域及其对应的 Python 工具: #### 1. **Web Scraping** 如果 AstrBot 是指用于网页抓取的工具,则可以考虑以下库: - `BeautifulSoup` 和 `requests` 组合常被用来解析 HTML 页面并提取数据[^1]。 - 示例代码如下: ```python import requests from bs4 import BeautifulSoup url = 'https://example.com' response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') print(soup.title.string) ``` #### 2. **Automation with Selenium** 对于更复杂的交互式网站抓取或模拟浏览器行为的任务,Selenium 是一个常用的选择。 - 它允许控制真实的浏览器实例,并执行点击、输入等操作。 - 示例代码: ```python from selenium import webdriver driver = webdriver.Chrome() driver.get('https://example.com') element = driver.find_element_by_id('some-id') print(element.text) driver.quit() ``` #### 3. **Computer Vision (If Related to Image Processing)** 假如 AstrBot 涉及图像处理或计算机视觉任务,那么 OpenCV-Python 将是一个非常合适的选项[^2]。 - 可以实现诸如对象检测、人脸识别等功能。 - 示例代码: ```python import cv2 image = cv2.imread('image.jpg') gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) cv2.imshow('Gray Image', gray_image) cv2.waitKey(0) cv2.destroyAllWindows() ``` #### 4. **Custom Bot Development Using Frameworks** 如果是构建自定义聊天机器人或其他类型的自动化程序,可参考以下框架: - `Flask` 或 `Django`:适合创建基于 Web 的服务端逻辑。 - `discord.py`:专为 Discord 聊天平台设计的机器人开发库。 - 示例 Flask 应用: ```python from flask import Flask app = Flask(__name__) @app.route('/') def home(): return "Hello from AstrBot!" if __name__ == '__main__': app.run(debug=True) ``` 尽管上述内容涵盖了多种可能性,但如果目标更为特定,请提供更多背景信息以便给出更加精确的回答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值