Spark on Hive 和 Hive on Spark 的区别

Spark on Hive :

Hive只作为存储角色,Spark负责sql解析优化,执行。
这里可以理解为Spark 通过Spark SQL 使用Hive 语句操作Hive表 ,底层运行的还是 Spark RDD。具体步骤如下:

通过SparkSQL,加载Hive的配置文件,获取到Hive的元数据信息;
获取到Hive的元数据信息之后可以拿到Hive表的数据;
通过SparkSQL来操作Hive表中的数据。

Hive on Spark:

Hive既作为存储又负责sql的解析优化,Spark负责执行。
这里Hive的执行引擎变成了Spark,不再是MR,相较于Spark on Hive,这个实现较为麻烦,必须要重新编译spark并导入相关jar包。目前,大部分使用Spark on Hive。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值