落球法测量液体的粘滞系数的数据处理秒出结果
公式是同样都适用的,那么粘滞系数的数值肯定可以由这个代码计算啦。
至于绝对误差的算法可能会有所差异。
# include<iostream>
# include<cmath>
using namespace std;
int main()
{
double d1, d2,d3,d4,d5,d6,d7,d8;
double d;
double t1,t2,t3,t4,t5;
double t;
double value;
double v;
double biaozhun;
double wucha;
cout<<"输入小球8组直径:"<<endl;
cin>>d1>>d2>>d3>>d4>>d5>>d6>>d7>>d8;
d=(d1+d2+d3+d4+d5+d6+d7+d8)/8000;
cout<<"输出小球直径平均值:"<<d*1000<<"mm"<<endl;
double p=7.8e3,p0=0.95e3,g=9.8,L=0.2,D=0.02;
cout<<"输入第一组温度测量时间"<<endl;
while(1)
{
cin>>t1>>t2>>t3>>t4>>t5;
t=(t1+t2+t3+t4+t5)/5;
cout<<"输出所需时间平均值为:"<<t<<'s'<<endl;
v=0.2/t;
cout<<"输出速度为:"<<v<<"m/s"<<endl;
value=((p-p0)*g*d*d*t)/(18*L*(1+2.4*d/D));
cout<<"该温度下粘滞系数为"<<value<<endl;
cout<<"此温度下粘度标准值:";
cin>>biaozhun;
wucha=fabs(value-biaozhun)/biaozhun;
cout<<"相对误差为:"<<wucha*100<<'%'<<endl;
cout<<endl<<endl;
cout<<"输入下一组温度测量时间:"<<endl;
}
return 0;
}
直接输入测量结果即可,来看一下界面;
![(https://img-blog.csdnimg.cn/20200513121633165.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NTQyMjMyMQ==,size_16,color_FFFFFF,t_70)
该代码适用于一般求解方法。若实验误差计算方法不一样,可基于此基础上进行修改。