手把手教你用Kaggle API轻松获取数据集——适合小白的详细教程

为什么要使用Kaggle API?这个问题约等于为什么要使用git clone命令而不是手动下载github项目。它并不是必要的,但会让你的数据下载过程更丝滑(同时更迎合极客们的心理需求
一次配置,终身轻松。

  1. 安装kaggle API

pip install kaggle即可,API 相当于安了一个天线接收器,可以接收到kaggle发来的数据包。

  1. 获取kaggle token:
    安好天线之后,需要添加一把钥匙来识别是谁向kaggle请求数据,你加入了这个竞赛,有数据请求权限才会给你发数据。token的作用就是识别你是谁。
    file-20240904140546491
    设置-API-创建新token,如果以前在旧设备上创建过,就expire再创建新的token
    自动会下载kaggle.json文件,其实就是一个存了你账号名和密钥的键值对:
    file-20240904141503043

  2. 把json文件放到kaggle文件夹下。

不知道.kaggle文件夹在哪里没关系,先在terminal里面输入一次命令行,比如我请求的是一个nlp入门竞赛(地址:(https://www.kaggle.com/competitions/nlp-getting-started)):

kaggle competitions download -c nlp-getting-started

很容易看出任意竞赛的数据请求方式:
竞赛地址:https://www.kaggle.com/competitions/竞赛名称
命令应为:kaggle competitions download -c 竞赛名称

此时肯定会报错的,因为读不到你的token,在报错信息里面可以找到你的.kaggle文件地址:
file-20240904142128266

把json文件粘贴进去就可以啦

  1. 运行数据请求命令
    在terminal运行命令即可。想要在jupyter notebook的块里运行就加个!:
!kaggle competitions download -c nlp-getting-started

下载后要手动给zip包解压,这点很不智能……

下次拉取别的数据集只用执行第四步即可。

### Kaggle 上的 Transformer 资源 #### 变压器教程 Kaggle 提供了许多关于变压器模型的高质量教程,这些教程不仅涵盖了理论基础还提供了实际操作案例。对于希望深入了解如何构建和优化基于注意力机制的神经网络的人来说非常有用。 例如,在一篇名为《A Comprehensive Guide to Transformers》的文章中,作者详细介绍了Transformers的工作原理以及它们是如何通过自注意机制来处理序列数据的[^1]。这篇文章适合那些想要理解Transformer背后数学概念的学习者,并且包含了大量可视化帮助读者更好地掌握知识点。 此外,《Getting Started with Transformers on Text Classification Tasks Using Hugging Face Library》这篇笔记则更侧重于实践应用方面。它展示了怎样利用HuggingFace库快速搭建起一个用于文本分类任务的Transformer模型并对其进行微调。这对于初学者来说是一个很好的起点,因为不需要从头编写复杂的代码就可以体验到最先进的NLP技术带来的便利之处。 #### 竞赛项目 除了丰富的学习材料之外,Kaggle上还有不少涉及Transformer的应用型比赛可以参与挑战: - **Jigsaw Toxic Comment Classification Challenge**: 此次赛事的目标是从给定的数据中识别出具有攻击性的言论。许多参赛队伍采用了预训练好的BERT或者其他变体形式作为解决方案的一部分,取得了不错的效果。 - **Quora Question Pairs Competition**: 这个竞赛旨在判断两个问题是否意思相同。由于问答配对的任务本质上属于自然语言推理范畴,因此非常适合用来测试各种改进版本的Encoder层设计效果。 ```python import transformers from transformers import BertTokenizer, TFBertForSequenceClassification tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2) ``` 上述Python脚本展示了一个简单的例子,说明了如何加载预先训练过的Bert模型来进行二元分类任务。这只是一个入门级示范;实际上可以根据具体需求调整参数设置以适应不同类型的问题场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值