Kaggle API 使用指南
项目地址:https://gitcode.com/gh_mirrors/ka/kaggle-api
1. 项目介绍
Kaggle API 是一个官方提供的命令行工具,用于与数据科学平台 Kaggle 进行交互。该API允许用户通过Python编程来访问和管理Kaggle上的数据集、竞赛和模型。开发者可以利用这个API自动化工作流程,如下载数据、提交比赛结果或部署模型。
2. 项目快速启动
安装
首先确保你的系统已安装了Python 3和pip
包管理器。然后运行以下命令安装Kaggle API:
pip install kaggle
配置凭证
要使用API,你需要在本地设置Kaggle凭据。有以下两种方式:
环境变量
将你的Kaggle用户名和API密钥作为环境变量设置:
export KAGGLE_USERNAME=<your_username>
export KAGGLE_API_KEY=<your_api_key>
凭证文件
创建一个名为 kaggle.json
的文件,并在其中输入凭据:
{
"username": "<your_username>",
"key": "<your_api_key>"
}
将此文件移动到 $HOME/.kaggle
目录下(Linux/Mac)或 %USERPROFILE%\.kaggle
(Windows)。
验证安装
验证API是否成功配置并能正常工作:
kaggle version
使用示例
登录并列出可用模型:
from kaggle.api.kaggle_api_extended import KaggleApi
api = KaggleApi()
api.authenticate()
api.model_list_cli()
3. 应用案例和最佳实践
- 自动下载数据:你可以定期从Kaggle下载新的数据集。
api.dataset_download_files(dataset_id='dataset_owner/dataset_name', path='./data')
- 提交比赛结果:开发完成后,通过API提交模型预测以参与竞赛。
api.competition_submit(predictions_file, competition_id, message)
- 版本控制:使用Git进行代码版本控制,确保每次更新都对应特定的数据版本。
4. 典型生态项目
- Jupyter Notebook集成:许多数据科学家喜欢在Jupyter环境中使用Kaggle API,这可以通过在Notebook中导入API实现。
from kaggle import api
api.authenticate_anonymously()
- 持续集成/持续部署(CI/CD):结合像Travis CI这样的服务,可以在每次代码推送时自动测试和部署模型。
本文档提供了Kaggle API的基本使用步骤,更多高级功能和详细信息,请查阅项目官方文档:Kaggle/kaggle-api。
kaggle-api Official Kaggle API 项目地址: https://gitcode.com/gh_mirrors/ka/kaggle-api