矩阵树定理

本文介绍了矩阵树定理,包括无向图和有向图的推广,以及变元矩阵树定理。通过解析例题展示了如何在实际问题中应用矩阵树定理,如重建问题和特定条件下的生成树计数。文章还讨论了优化计算复杂度的策略。
摘要由CSDN通过智能技术生成

一些定义如下:

  • 度数矩阵:一个 n n n 阶无向图 G G G 的度数矩阵 D D D 的大小为 n × n n \times n n×n,且 D D D 仅在 D i , i D_{i,i} Di,i( i = 1 , 2 , ⋯ n i=1,2,\cdots n i=1,2,n) 处有值,其中 D i , i D_{i,i} Di,i 的值为点 i i i 的度数。
  • (出 / 入) 度矩阵:一个 n n n 阶有向图 G G G 的 (出 / 入) 度矩阵 D D D 的大小为 n × n n\times n n×n,且 D D D 仅在 D i , i D_{i,i} Di,i( i = 1 , 2 , ⋯ n i=1,2,\cdots n i=1,2,n) 处有值,其中 D i , i D_{i,i} Di,i 的值为点 i i i 的 (出 / 入) 度。
  • 邻接矩阵 —— 无向图:一个 n n n 阶无向图 G G G 的邻接矩阵 A A A 的大小为 n × n n \times n n×n A A A A i , j A_{i,j} Ai,j( i ≠ j i\neq j i=j) 处有值,其中 A i , j A_{i,j} Ai,j 的值为点 i , j i,j i,j 间的连边个数。
  • 邻接矩阵 —— 有向图:一个 n n n 阶有向图 G G G 的邻接矩阵 A A A 的大小为 n × n n \times n n×n A A A A i , j A_{i,j} Ai,j( i ≠ j i\neq j i=j) 处有值,其中 A i , j A_{i,j} Ai,j 的值为从点 i i i 连向点 j j j 的有向边个数。

矩阵树定理

由于此定理的证明极其复杂,需要大量高等数学知识,这里只给出结论。

矩阵树定理是用于求解图上生成树计数问题的重要定理,内容如下:

G G G 为一 n n n 阶无向图,定义 G G G 的基尔霍夫(Kirchhoff) 矩阵 K K K 为其度数矩阵与其邻接矩阵之差,则 G G G 的无根生成树的个数为 K K K 的任意一个 n − 1 n - 1 n1 阶主子式对应行列式的绝对值。

定理内容十分简洁,没什么好讲的。代码实现上基尔霍夫矩阵可以直接按照定义计算,对行列式求值用高斯消元即可,时间复杂度 O ( n 3 ) \Omicron(n^3) O(n3)

下面给出高斯消元求行列式的代码:

double det(int n){
   //求矩阵a[1...n][1...n]的行列式
	double d = 1;
	for(int i = 1; i <= n; i ++){
   
		if(fabs(a[i][i]) < eps){
   
			bool flag = 0;
			for(int j = i + 1; j <= n; j ++){
   
				if(fabs(a[j][i]) > eps){
   
					d *= -1,flag = 1;//每次交换要变号
					for(int k = i; k <= n; k ++) swap(a[i][k],a[j][k]);
					break;
				}
			}
			if(!flag) return 0;//若整列均为0,行列式值为0,这种情况当且仅当原图不连通
		}
		for(int j = i + 1; j <= n; j ++){
   
			double t = a[j][i] / a[i][i];
			for(int k = i; k <= n; k ++) a[j][k] -= t * a[i][k];
		}
		d *= a[i][i];//最终值为消去下三角后主对角线元素之积,这里由于a[i][i]不会再改变故直
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值