pytorch 可视化

一、模型网络结构可视化

1. 直接print(model)

优点: pytorch自带,直接打印即可

缺点:参数多的时候看的头大,不是很直观

2. 使用torchinfo,torchinfo.summary(model,input_size[batch_size,channel,h,w)

pip install torchinfo

优点:更直观,而且还把你的输入在每一层的形状变化推理出来了,甚得朕心。

缺点:要啥自行车啊,挺好的了

 

二、CNN可视化

1. 卷积核可视化

cnn的参数是存在卷积核里的,直接查看卷积核参数有利于对现有模型的理解

import torch
import matplotlib.pyplot as plt

# 初始化一个训练过的模型
from torchvision.models import vgg11
model = vgg11(pretrained=True)

# 拿出一个卷积层
# dict(model.features.named_children()) tip:可以以字典的形式拿出模型中任意一层
conv1 = dict(model.features.named_children())['3']



kernel_set = conv1.weight.detach() # 把conv1这一层的参数单独拿出来,并保持这层参数不会发生变化
num = len(conv1.weight.detach())
print(kernel_set.shape)

# 把该卷积层的所有卷积核画出来
for i in range(0,num):
    i_kernel = kernel_set[i]
    plt.figure(figsize=(20, 17))
    if (len(i_kernel)) > 1:
        for idx, filer in enumerate(i_kernel):
            plt.subplot(9, 9, idx+1) 
            plt.axis('off')
            plt.imshow(filer[ :, :].detach(),cmap='bwr')

 

2. 特征图可视化方法

特征图是卷积后的结果,特征图的可视化可以非常直观的让我们了解到模型关注图像的哪个部分

2.1 利用hook类进行可视化

2.2 利用class activation map 进行可视化

pip install grad-cam

2.3 使用FlashTorch快速实现CNN可视化

pip install flashtorch

三、tensorboard 可视化

tensorboard 把集成了大部分训练所需的可视化需求,简单操作就可以快速查看模型参数,主要有下面几个功能

pip install tensorboardX

1. 模型结构可视化

2. 图像可视化

3. 连续变量可视化

4. 参数分布可视化

今天累了,特征图可视化的部分我会逐渐补充全面

=========== 参考

本文为学习讲义后的心得,讲义为datawhale提供

讲义地址:点击此处

感谢datawhale开源社区提供的丰富内容,又学会了很多技巧。

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
PyTorch中,可以使用不同的方法来可视化模型和训练过程。引用\[1\]中的代码展示了如何查看卷积层的参数,并将其可视化。首先,通过导入所需的库和模型,可以初始化一个预训练的模型,如vgg11。然后,可以使用字典的形式获取模型中的任意一层,如conv1。通过将该层的参数单独提取出来,并保持其不发生变化,可以获取卷积核的参数。最后,可以使用循环将该卷积层的所有卷积核绘制出来。 另外,引用\[2\]和\[3\]中的代码展示了如何在训练过程中添加想要可视化的内容。首先,可以设置优化器和损失函数。然后,在每个epoch和每个batch中,可以计算损失并进行反向传播和优化。在每个print_step个batch之后,可以记录训练集损失值、测试集准确率和训练数据的可视化图像。此外,还可以使用直方图可视化网络参数的分布情况。 总结起来,PyTorch提供了丰富的可视化工具和方法,可以帮助我们更好地理解模型和训练过程。 #### 引用[.reference_title] - *1* [pytorch 可视化](https://blog.csdn.net/weixin_45456178/article/details/127452897)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [PyTorch【8】PyTorch可视化工具](https://blog.csdn.net/m0_63462829/article/details/127153454)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dennis-Ning

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值