tf.name_scope()、tf.variable_scope()是Tensorflow的两个作用域函数。
他们一般会与tf.variable() 和tf.get_variable()这两个用于创建/调用变量的函数搭配使用。其中最常用的两个用途是:1、变量共享,2、tensorboard画流程图时用于可视化封装变量。
为什么需要共享变量呢?
举一个RNN的例子:
在 train RNN 和 test RNN 的时候, RNN 的 time_steps 会有不同的取值, 这将会影响到整个 RNN 的结构, 所以在 test 的时候, 不能单纯地使用 train 时建立的那个 RNN.。但是 train RNN 和 test RNN 又必须是有同样的 weights biases 的参数。这种情况下共享变量就能发挥巨大作用。
这两种用途是有特定的搭配方式:
1、tf.name_scope 主要结合 tf.Variable() 来使用,方便参数命名管理。
2、tf.variable_scope() 主要结合 tf.get_variable() 来使用,用于实现变量共享。
先来介绍一下tf.variable() 和tf.get_variable()的区别:
tf.Variable() :每次都会新建变量。
tf.get_variable():首先会搜索变量名,有就直接用,没有再新建。其拥有一个变量检查机制,会检测已经存在的变量是否设置为共享变量,如果已经存在的变量没有设置为共享变量,TensorFlow 运行到第二个拥有相同名字的变量的时候,就会报错。(大多数时候我们是希望重用一些变量)
1、tf.name_scope 结合 tf.Variable(),方便参数命名管理的代码示例:
# 在一个命名空间来定义变量
with tf.name_scope('conv1') as scope:
weights1 = tf.Variable([1.0, 2.0], name='weights')
bias1 = tf.Variable([0.3], name='bias')
# 下面是在另外一个命名空间来定义变量的
with tf.name_scope('conv2') as scope:
weights2 = tf.Variable([4.0, 2.0], name='weights')
bias2 = tf.Variable([0.33], name='bias')
# 所以,实际上weights1 和 weights2 这两个引用名指向了不同的空间,不会冲突
print(weights1.name)
print(weights2.name)
'''
conv1/weights:0
conv2/weights:0
'''
2、tf.variable_scope() 结合 tf.get_variable(),实现变量共享的代码示例:
# 这里是正确的打开方式~~~可以看出,name 参数才是对象的唯一标识
import tensorflow as tf
with tf.variable_scope('v_scope') as scope1:
Weights1 = tf.get_variable('Weights', shape=[2,3])
bias1 = tf.get_variable('bias', shape=[3])
# 下面来共享上面已经定义好的变量
# note: 在下面的 scope 中的变量必须已经定义过了,才能设置 reuse=True,否则会报错
with tf.variable_scope('v_scope', reuse=True) as scope2:
Weights2 = tf.get_variable('Weights')
print(Weights1.name)
print(Weights2.name)
# 可以看到这两个引用名称指向的是同一个内存对象
'''
v_scope/Weights:0
v_scope/Weights:0
'''
代码参考于此