正则化的方法(L1、L2、dropout等)原理与实现

一、引入原因

正则化是为了处理过拟合问题,关于什么是过拟合,可查看这篇博客https://blog.csdn.net/weixin_45459911/article/details/105769370

二、正则化的常用方法

1、增大训练集

训练的数据集规模越大,越不容易发生过拟合,但是这点往往受限于实际要求,所以有的时候很难实现。

2、L1 & L2范数

1、范数的数学定义

假设 x 是一个向量,它的 L p L^p Lp 范数定义:
在这里插入图片描述

2、实现原理

在目标函数后面添加一个系数的“惩罚项”是正则化的常用方式,为了防止系数过大从而让模型变得复杂。在加了正则化项之后的目标函数为:
在这里插入图片描述
式中, λ / 2 m {\lambda}/{2m} λ/2m是一个常数, m 为样本个数, λ \lambda λ 是一个超参数,用于控制正则化程度,而 Ω ( w ) \Omega(w)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值