tf.concat与tf.stack的作用与区别

本文详细解析了TensorFlow中TF.concat与TF.stack函数的区别与使用方法,通过具体实例展示了如何利用这两个函数进行张量拼接操作,是理解TensorFlow数据处理流程的重要参考资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tf.concat是沿某一维度拼接shape相同的张量,拼接生成的新张量维度不会增加
而tf.stack是在新的维度上拼接,拼接后维度加1

举个例子

import tensorflow as tf
a = tf.constant([[1, 2, 3], [4, 5, 6]])
b = tf.constant([[7, 8, 9], [10, 11, 12]])
ab1 = tf.concat([a, b], axis=0)
ab2 = tf.stack([a, b], axis=0)

sess = tf.Session()
print(sess.run(ab1))
print(sess.run(ab2))
print(ab1)
print(ab2)

运行结果为:
在这里插入图片描述
可以看到用stack拼接的维度变成了2x2x3.
上面的例子中的axis=0,若改成axis=1,就在第一个向量后面进行拼接。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值