注意点:
1.将一维01背包问题改编了一下 ,注意dp容器的大小
class Solution {
public:
bool canPartition(vector<int>& nums) {
int sum = 0;
for(int i = 0; i<nums.size(); i++) {
sum += nums[i];
}
// 如果sum为奇数,直接返回false
if(sum %2 == 1) return false;
int target = sum/2;
// dp[j]的含义就是背包容量是j,所能装的最大质量是dp[j],dp的大小是nums.length*nums[i]/2,只需要一半即可
vector<int> dp(10001, 0);
// 主要就是一维01背包问题的改编
for(int i = 0; i<nums.size(); i++) {
for(int j = target; j>=nums[i]; j--) {
dp[j] = max(dp[j], dp[j-nums[i]]+nums[i]);
}
// cout程序,打印数组
// for(int c= 0; c<= target; c++) {
// cout << dp[c] << ' ';
// }
// cout<<endl;
}
// 当背包容量j的最大质量dp[j]和target相等的时候,返回true
if(dp[target] == target) return true;
return false;
}
};