题目:ComABAN: refining molecular representation with the graph attention mechanism to accelerate drug discovery
文献来源:Briefings in Bioinformatics, 2022, 23(5), 1–14
代码:https://github.com/divinehui/ComABAN
简介:发展分子表征的一个未解决的挑战是确定一种表征分子结构的最佳方法。理解分子内相互作用对实现这一目标至关重要。在本研究中,提出了一种新的基于图注意的ComABAN方法,通过同时考虑原子-原子、键-键和原子-键的相互作用来提高分子表示的准确性。此外,作者在8个公共和680个专有工业数据集上广泛的基准模型,跨越各种化学端点。结果表明,与传统的机器学习方法和基于深度学习的方法相比,ComABAN具有更高的预测精度。此外,利用训练后的神经网络预测150万个分子库,并筛选出分类结果为i级的化合物。随后,通过级联对接、分子动力学模拟对这些预测的分子进行评分和排序,生成5个潜在的候选分子。这5种分子均与抑制HIF-1α表达的纳摩尔生物活性抑制剂具有高度的相似性,作者合成了3种化合物(Y-1、Y-3、Y-4),并在体外测试了其抑制能力。研究结果表明,ComABAN是加速药物发现的有效工具。
主要内容:
-------------------------------------------
欢迎关注点赞收藏转发!
下次见!