学术速运|ComABAN:利用图注意机制细化分子表示,以加速药物的发现

题目:ComABAN: refining molecular representation with the graph attention mechanism to accelerate drug discovery

文献来源:Briefings in Bioinformatics, 2022, 23(5), 1–14

代码:https://github.com/divinehui/ComABAN

简介:发展分子表征的一个未解决的挑战是确定一种表征分子结构的最佳方法。理解分子内相互作用对实现这一目标至关重要。在本研究中,提出了一种新的基于图注意的ComABAN方法,通过同时考虑原子-原子、键-键和原子-键的相互作用来提高分子表示的准确性。此外,作者在8个公共和680个专有工业数据集上广泛的基准模型,跨越各种化学端点。结果表明,与传统的机器学习方法和基于深度学习的方法相比,ComABAN具有更高的预测精度。此外,利用训练后的神经网络预测150万个分子库,并筛选出分类结果为i级的化合物。随后,通过级联对接、分子动力学模拟对这些预测的分子进行评分和排序,生成5个潜在的候选分子。这5种分子均与抑制HIF-1α表达的纳摩尔生物活性抑制剂具有高度的相似性,作者合成了3种化合物(Y-1、Y-3、Y-4),并在体外测试了其抑制能力。研究结果表明,ComABAN是加速药物发现的有效工具。

主要内容:

-------------------------------------------

欢迎关注点赞收藏转发!

下次见!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值