学术速运|PNAS-蛋白质语言空间中的对比学习预测了药物和蛋白质靶标之间的相互作用

ConPLex是一个深度学习模型,结合预训练的蛋白质语言模型和对比共嵌入技术,提高了药物-靶点相互作用预测的准确性、泛化性和特异性。实验验证显示,ConPLex能有效预测激酶-药物相互作用,且其嵌入是可解释的,有助于药物发现过程。
摘要由CSDN通过智能技术生成

题目:Contrastive learning in protein language space predicts interactions between drugs and protein targets

文献来源:PNAS 2023 Vol. 120 No. 24 e2220778120

代码:ConPLex.csail.mit.edu.

简介:基于序列的药物-靶点相互作用的预测有可能通过补充实验筛选来加速药物的发现。这种计算预测需要是可一般化的和可伸缩的,同时对输入中的细微变化保持敏感。然而,目前的计算技术不能同时满足这些目标,往往会牺牲一个目标的性能来实现其他目标。作者开发了一个深度学习模型,ConPLex,成功地利用了预训练的蛋白质语言模型(“PLex”)的发展,并使用了蛋白质锚定的对比共嵌入(“Con”)来超越最先进的方法。ConPLex具有较高的准确性,对未知数据的广泛适应性,以及对诱饵化合物的特异性。它基于学习到的表征之间的距离来预测结合,从而能够在大量化合物库和人类蛋白质组的规模上进行预测。19种激酶-药物相互作用预测的实验测试验证了12种相互作用,包括4种亚纳摩尔亲和力,加上一种强结合的EPHB1抑制剂(KD = 1.3 nM)。此外,ConPLex嵌入是可解释的,可以可视化药物-靶点嵌入空间,并使用嵌入来表征人类细胞表面蛋白的功能。作者预计ConPLex将通过在基因组规模上使计算药物筛选可行,促进高效的药物发现

主要内容:

-------------------------------------------

欢迎点赞收藏转发!

下次见!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值