题目:Contrastive learning in protein language space predicts interactions between drugs and protein targets
文献来源:PNAS 2023 Vol. 120 No. 24 e2220778120
代码:ConPLex.csail.mit.edu.
简介:基于序列的药物-靶点相互作用的预测有可能通过补充实验筛选来加速药物的发现。这种计算预测需要是可一般化的和可伸缩的,同时对输入中的细微变化保持敏感。然而,目前的计算技术不能同时满足这些目标,往往会牺牲一个目标的性能来实现其他目标。作者开发了一个深度学习模型,ConPLex,成功地利用了预训练的蛋白质语言模型(“PLex”)的发展,并使用了蛋白质锚定的对比共嵌入(“Con”)来超越最先进的方法。ConPLex具有较高的准确性,对未知数据的广泛适应性,以及对诱饵化合物的特异性。它基于学习到的表征之间的距离来预测结合,从而能够在大量化合物库和人类蛋白质组的规模上进行预测。19种激酶-药物相互作用预测的实验测试验证了12种相互作用,包括4种亚纳摩尔亲和力,加上一种强结合的EPHB1抑制剂(KD = 1.3 nM)。此外,ConPLex嵌入是可解释的,可以可视化药物-靶点嵌入空间,并使用嵌入来表征人类细胞表面蛋白的功能。作者预计ConPLex将通过在基因组规模上使计算药物筛选可行,促进高效的药物发现
主要内容:
-------------------------------------------
欢迎点赞收藏转发!
下次见!