用户角色:
用户角色 user personal,⽤户⻆⾊是⼀个集合体,不是指某个具体的⼈,是从用户群体中抽象出来的典型用户。
一般包含以下信息:
个人基本信息(性别、年龄、性格、学历、婚姻、爱好、职业)
⽤户的使⽤场景(与产品使用相关的具体情境,用户目标或产品使用行为描述等)
作用:
在产品早期和发展期,会较多地借助用户角色,帮助项目组成员理解目标用户。
辅助产品的决策和设计,尽可能减少主观臆测,理解用户到底真正需要什么,从而知道如何更好为不同类型用户服务。
用户画像:
用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个
标签化的用户模型
,构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息的分析而得到的、高度精炼的特征标识。
⽤户⻆⾊和⽤户画像的区别:
用户角色通常出现先产品研发阶段及产品上线初期,鉴于企业手中没有大量的用户数据和行为记录,只能根据典型用户提出的需求建立用户角色,是虚拟的。⽤户画像是在产品有⼤量⽤户和⽤户数据之后根据数据分析形成的。
⼀个产品的⽤户量级到10万左右,就要考虑做⽤户画像体系。
⽤户⻆⾊是虚拟的,⽤户画像是基于真实数据做的。
静态标签(相对稳定的标签):
特点:自然属性具有先天性 ,整体处于稳定状态一经形成将一直保持着稳定不变的状态,或者某一段较长的时间内保持稳定不变。
自然属性:姓名、性别、年龄、身高、体重、地域、星座、血型等。
社会属性:职业、婚姻、教育程度等。
动态标签(不稳定的的标签):
特点:动态标签是动态的,它是根据用户的操作行为给用户打上不同的行为标签,通过获取到大量的网络行为数据、网站行为数据、用户内容偏好数据、用户交易数据。
行为属性:
注册、登录、搜索、邀请、浏览、评论、点赞、发布、留言、加入购物车、购买、使用优惠券等。
不同的时间、场景,这些信息不断发生着变化,它们都属于动态信息。
企业通过捕捉用户的这些数据,可以对用户进行深浅度归类,区分活跃/不活跃用户。
标签数据的获取:
用户个人信息(注册)。
网站页面数据埋点,实时采集用户行为数据。
用户购买行为分析。
第⼀套⽤户画像:
核心用户群:
泛指用户群体规模普遍偏大,忠诚度高,方便培养成社群核心,
具备反哺平台的能力,能为平台创造价值实现盈利
。例:微博作为内容创作类平台,核心用户一定是原创作者,经常发帖子的
次要用户群:
次要用户群体泛指用户群体规模相对较大,
忠诚度较高,乐于参与但创造价值能力有限
。例:微博次要用户–普通人,不发帖/发帖少,喜欢瞎逛那种
小众用户群:
小众用户群泛指用户群体规模较小,
忠诚度不高,留恋平台某单一功能,活跃度低
。例:微博小众用户群,比如因为某大V才下载的微博,只是为了每天看一下热搜榜下载的app
负面用户群:
负面用户群泛指用户群体行为言论主要针对平台缺陷功能提出问题或质疑,重视该群体声音,可以快速改善平台用户体验。
例:微博负面用户群,这个会比较多,可能这种类型具有多面性,即是核心用户也是负面用户,负面用户更多的是吐槽平台
第二套用户画像:
头羊(KOL,关键意⻅领袖)、狼(⽐如⼴告主)
如果我有一片草地,我就在我的草地上养羊,所以我要有第一只羊(种子用户)。如果这一只羊能够在我的草地上活下来,并且玩的很好,很开心,那么我的草地就是没问题的,我可以引入更多的羊。羊多了,我就需要头羊进行管理。羊多了,就会有狼,我把羊圈起来,向狼收费。
我们一共谈论到了三个用户画像,第一只羊,头羊和狼
头羊:微博的大V、抖音的网红、淘宝的商家,这些都是头羊。
狼:平台、广告主、供应商等
第三套用户画像:
大明:对自己的需求非常了解、非常清晰。比如,一个男生要买一件衬衫或者一件3C产品,那么他需要寻找的核心是配置、价格和效率。于是像淘宝、拼多多、京东这样SPU多的平台就是服务于大明这类用户,便于他们去搜索自己想买的东西。
笨笨:有大概的需求但是没有那么明确,比如想买个键盘但是不知道买什么样的。这类用户需要刺激才能完成消费,例如抖音的带货、小红书的种草等
小闲:没有需求的用户。比如社交、玩游戏、逛UGC社区等可以让小闲打发时间。
大部分的用户都是小闲,当平台的刺激足够就会升级到笨笨,这个时候是已经有欲望要买了,如果能满足需求就会升级到大明进行消费