P4389 付公主的背包(生成函数,多项式exp)

P4389 付公主的背包

考虑生成函数有:
∏ i = 1 n 1 1 − x v i 对 其 取 对 数 得 , ∑ i = 1 n ln ⁡ 1 1 − x v i F ( x ) = 1 1 − x v , G ( x ) = ln ⁡ F ( x ) G ( x ) = ∫ F ′ ( x ) F ( x ) d x G ( x ) = ∫ v x v − 1 1 − x v d x G ( x ) = ∫ ∑ n ≥ 0 v x v n + v − 1 d x G ( x ) = ∑ n ≥ 0 v x v n + v v n + v G ( x ) = ∑ n ≥ 0 x v ( n + 1 ) n + 1 G ( x ) = ∑ n ≥ 1 x v n n 对 于 原 式 : ∑ i = 1 n ∑ j = 1 ∞ x v i j j \prod_{i = 1} ^{n} \frac{1}{1 - x ^{v_i}}\\ 对其取对数得,\sum_{i = 1} ^{n} \ln \frac{1}{1 - x ^{v_i}}\\ F(x) = \frac{1}{1 - x ^ v}, G(x) = \ln F(x)\\ G(x) = \int \frac{F'(x)}{F(x)} dx\\ G(x) = \int \frac{v x ^{v - 1}}{1 - x ^ v} dx\\ G(x) = \int \sum_{n \geq 0} vx ^{vn + v - 1} dx\\ G(x) = \sum_{n \geq 0} \frac{v x ^{vn + v}}{vn + v}\\ G(x) = \sum_{n \geq 0} \frac{x ^{v(n + 1)}}{n + 1}\\ G(x) = \sum_{n \geq 1} \frac{x ^{vn}}{n}\\ 对于原式:\sum_{i = 1} ^{n} \sum_{j = 1} ^{\infty} \frac{x ^{v_i j}}{j}\\ i=1n1xvi1i=1nln1xvi1F(x)=1xv1,G(x)=lnF(x)G(x)=F(x)F(x)dxG(x)=1xvvxv1dxG(x)=n0vxvn+v1dxG(x)=n0vn+vvxvn+vG(x)=n0n+1xv(n+1)G(x)=n1nxvn:i=1nj=1jxvij
提前预处理出 i n v inv inv,然后 O ( n log ⁡ n ) O(n \log n) O(nlogn) v i j v_i j vij项加上 i n v [ j ] inv[j] inv[j],再做一次 ( m o d x m + 1 ) \pmod{x ^{m + 1}} (modxm+1)的,多项式 e x p exp exp即可。

#include <bits/stdc++.h>

using namespace std;

const int mod = 998244353, inv2 = mod + 1 >> 1;

namespace Quadratic_residue {
  struct Complex {
    int r, i;

    Complex(int _r = 0, int _i = 0) : r(_r), i(_i) {}
  };

  int I2;

  Complex operator * (const Complex &a, Complex &b) {
    return Complex((1ll * a.r * b.r % mod  + 1ll * a.i * b.i % mod * I2 % mod) % mod, (1ll * a.r * b.i % mod + 1ll * a.i * b.r % mod) % mod);
  }

  Complex quick_pow(Complex a, int n) {
    Complex ans = Complex(1, 0);
    while (n) {
      if (n & 1) {
        ans = ans * a;
      }
      a = a * a;
      n >>= 1;
    }
    return ans;
  }

  int get_residue(int n) {
    mt19937 e(233);
    if (n == 0) {
      return 0;
    }
    if(quick_pow(n, (mod - 1) >> 1).r == mod - 1) {
      return -1;
    }
    uniform_int_distribution<int> r(0, mod - 1);
    int a = r(e);
    while(quick_pow((1ll * a * a % mod - n + mod) % mod, (mod - 1) >> 1).r == 1) {
      a = r(e);
    }
    I2 = (1ll * a * a % mod - n + mod) % mod;
    int x = quick_pow(Complex(a, 1), (mod + 1) >> 1).r, y = mod - x;
    if(x > y) swap(x, y);
    return x;
  }
}

const int N = 1e6 + 10;

int r[N], inv[N], a[N], b[N], c[N], d[N], e[N], t[N], n, m;

//a是输入数组,b存放多项式逆,c存放多项式开根,d存放多项式对数ln,e存放多项式指数exp,t作为中间转移数组

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * a * ans % mod;
    }
    a = 1ll * a * a % mod;
    n >>= 1;
  }
  return ans;
}

void get_r(int lim) {
  for (int i = 0; i < lim; i++) {
    r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
  }
}

void get_inv(int n) {
  inv[1] = 1;
  for (int i = 2; i <= n; i++) {
    inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
  }
}

void NTT(int *f, int lim, int rev) {
  for (int i = 0; i < lim; i++) {
    if (i < r[i]) {
      swap(f[i], f[r[i]]);
    }
  }
  for (int mid = 1; mid < lim; mid <<= 1) {
    int wn = quick_pow(3, (mod - 1) / (mid << 1));
    for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
      int w = 1;
      for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {
        int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;
        f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;
      }
    }
  }
  if (rev == -1) {
    int inv = quick_pow(lim, mod - 2);
    reverse(f + 1, f + lim);
    for (int i = 0; i < lim; i++) {
      f[i] = 1ll * f[i] * inv % mod;
    }
  }
}

void polyinv(int *f, int *g, int n) {
  /* 
    保证数组清零: 
    用了数组(a, b, t), a数组不变, b数组只有前n个不为零后面全为零, t数组用完后清零了。
  */
  if (n == 1) {
    g[0] = quick_pow(f[0], mod - 2);
    return ;
  }
  polyinv(f, g, n + 1 >> 1);
  for (int i = 0; i < n; i++) {
    t[i] = f[i];
  }
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(t, lim, 1);
  NTT(g, lim, 1);
  for (int i = 0; i < lim; i++) {
    int cur = (2 - 1ll * g[i] * t[i] % mod + mod) % mod;
    g[i] = 1ll * g[i] * cur % mod;
    t[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

void polysqrt(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = Quadratic_residue::get_residue(f[0]);
    return ;
  }
  polysqrt(f, g, n + 1 >> 1);
  polyinv(g, b, n);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  for (int i = 0; i < n; i++) {
    t[i] = f[i];
  }
  NTT(g, lim, 1);
  NTT(b, lim, 1);
  NTT(t, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = (1ll * inv2 * g[i] % mod + 1ll * inv2 * b[i] % mod * t[i] % mod) % mod;
    b[i] = t[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

void derivative(int *a, int *b, int n) {
  for (int i = 0; i < n; i++) {
    b[i] = 1ll * a[i + 1] * (i + 1) % mod;
  }
}

void integrate(int *a, int n) {
  for (int i = n - 1; i >= 1; i--) {
    a[i] = 1ll * a[i - 1] * inv[i] % mod;
  }
  a[0] = 0;
}

void polyln(int *f, int *g, int n) {
  polyinv(f, b, n);
  derivative(f, g, n);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(g, lim, 1);
  NTT(b, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = 1ll * g[i] * b[i] % mod;
    b[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
  integrate(g, n);
}

void polyexp(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = 1;
    return ;
  }
  polyexp(f, g, n + 1 >> 1);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  polyln(g, d, n);
  for (int i = 0; i < n; i++) {
    t[i] = (f[i] - d[i] + mod) % mod;
  }
  t[0] = (t[0] + 1) % mod;
  get_r(lim);
  NTT(g, lim, 1);
  NTT(t, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = 1ll * g[i] * t[i] % mod;
    t[i] = d[i] =  0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

int vis[N];

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  scanf("%d %d", &n, &m);
  get_inv(4 * m);
  for (int i = 1, v; i <= n; i++) {
    scanf("%d", &v);
    vis[v]++;
  }
  for (int i = 1; i <= m; i++) {
    for (int j = i; j <= m; j += i) {
      a[j] = (a[j] +  1ll * inv[i] * vis[j / i] % mod) % mod;
    }
  }
  polyexp(a, e, m + 1);
  for (int i = 1; i <= m; i++) {
    printf("%d\n", e[i]);
  }
  return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值