💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
【GWO-BP-AdaBoost】这一表述融合了三种先进的计算技术:灰狼优化(Grey Wolf Optimizer, GWO)、BP神经网络(Backpropagation Neural Network, BPNN)以及AdaBoost集成方法,旨在构建一个高性能的预测模型。下面是对这个组合方法的详细解析:
-
灰狼优化算法 (GWO):这是一种受自然界灰狼捕食行为启发的群体智能优化算法。GWO通过模拟狼群中阿尔法、贝塔和欧米伽等角色的协作与竞争策略,寻找问题的最优解。在优化过程中,算法通过不断更新搜索空间中的代理点(代表潜在解)来逼近全局最优解,适用于解决函数优化、模式识别、机器学习等领域的问题。
-
BP神经网络 (BPNN):这是一种典型的多层前馈型人工神经网络,以其强大的非线性映射能力和反向传播误差修正机制而闻名。BP神经网络能够学习并处理复杂的数据关系,常用于分类和回归预测任务。然而,其性能严重依赖于初始权重和阈值的设置,以及训练过程中的参数调整。
-
AdaBoost集成方法:AdaBoost(Adaptive Boosting)是一种机器学习的集成方法,通过结合多个弱分类器(在此上下文中可以是BP神经网络)来构建一个强分类器。每个弱分类器在训练过程中被赋予不同的权重,根据其在前一轮迭代中的错误率进行调整。错误率高的分类器在下一轮将获得更多的关注,以逐步改进整个集成系统的性能。
将这三者结合起来的【GWO-BP-AdaBoost】框架,工作流程大致如下:
-
初始化与优化:首先,使用GWO算法优化BP神经网络的初始权重和阈值,以期快速找到一个较好的初始解,避免BP神经网络陷入局部最优解。
-
集成学习:然后,基于优化后的BP神经网络模型,应用AdaBoost算法集成多个这样的BP神经网络。通过多轮迭代,根据各个BP神经网络在训练数据上的表现动态调整它们的权重,形成一个更加鲁棒和精确的预测模型。
这种结合方式的优势在于:
- 提高预测精度:通过AdaBoost集成多个经过GWO优化的BP神经网络,可以有效减少单个模型的过拟合风险,提升整体预测性能。
- 增强泛化能力:GWO优化有助于BP神经网络更好地探索解空间,找到更优的参数配置;AdaBoost则通过强调那些在前几轮预测中表现不佳的实例,提升了模型对复杂或边缘案例的处理能力。
- 适应性强:此框架对于不同类型的数据集和预测问题具有较强的适应性,尤其是处理高维、非线性数据时表现突出。
总之,【GWO-BP-AdaBoost】研究提供了一种新的集成学习方法,旨在利用群体智能优化和集成学习的互补优势,推动预测模型的性能边界。该方法有望在金融预测、疾病诊断、能源消耗预测等多个领域展现其潜力。
📚2 运行结果
部分代码:
function [at test_sim BPoutput IterCurve] = gwo_bp_adaboost(inputn,outputn,K,hiddennum,inputn_test,lb,ub,dim,popsize,iter_max);
inputnum=size(inputn,1);
outputnum=size(outputn,1);
% 迭代曲线
IterCurve = zeros(K,iter_max);
%% 权重初始化
%样本权重
[~,nn]=size(inputn);
D(1,:)=ones(1,nn)/nn;
%% 弱预测器
for i=1:K
disp(strcat('GWO-BPNN-Adaboost预测:(第',num2str(i),'个弱分类器训练中)'))
%弱预测器训练
net=newff(inputn,outputn,hiddennum,{'tansig','purelin'},'trainlm');
%网络参数配置
net.trainParam.epochs=500; % 训练次数,这里设置为500次
net.trainParam.lr=0.1; % 学习速率,这里设置为0.01
net.trainParam.goal=0.00001; % 训练目标最小误差,这里设置为0.0001
net.trainParam.show=25; % 显示频率,这里设置为每训练25次显示一次
net.trainParam.mc=0.01; % 动量因子
net.trainParam.min_grad=1e-6; % 最小性能梯度
net.trainParam.max_fail=6; % 最高失败次数
% 隐藏训练界面--显示会很慢
net.trainParam.showWindow = false;
net.trainParam.showCommandLine = false;
% 灰狼算法优化BPNN
[IterC Best_Pos] = gwo_bp(dim,iter_max,ub,lb,popsize,net,inputnum,hiddennum,outputnum,inputn,outputn);
IterCurve(i,:) = IterC;
x = Best_Pos;
% %用遗传算法优化的BP网络进行值预测
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%训练
net=train(net,inputn,outputn);
%弱预测器预测
BPoutput(i,:)=sim(net,inputn);
%预测误差
erroryc(i,:)=outputn-BPoutput(i,:);
%测试数据预测
test_sim(i,:)=sim(net,inputn_test);
%调整D值
Error(i)=0;
for j=1:nn
if abs(erroryc(i,j))>0.001 %较大误差
Error(i)=Error(i)+D(i,j);
D(i+1,j)=D(i,j)*1.1;
else
D(i+1,j)=D(i,j);
end
end
% 若错误率过小 则跳出
if Error(i)<eps
break;
end
%计算弱预测器权重
at(i)=0.5/exp(abs(Error(i)));
%D值归一化
D(i+1,:)=D(i+1,:)/sum(D(i+1,:));
end
%% 强预测器预测
at=at/sum(at);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
🌈4 Matlab代码、数据、文章
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取