多项式全家桶(半)

快速傅里叶变换(FFT)

多项式表示

系数表示法:

一个 n n n次多项式可以用 n + 1 n + 1 n+1个系数表示出来: f ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ + a n − 1 x n − 1 + a n x n f(x) = a_0 + a_1 x + a_2 x ^ 2 + \dots + a_{n - 1} x ^{n- 1} + a_n x ^n f(x)=a0+a1x+a2x2++an1xn1+anxn

点值表示法:

通过线性代数,高斯消元我们可以知道,一个 n n n次多项式可以通过 n + 1 n + 1 n+1个点联立方程组解得:

f ( x ) = { ( x 0 , f ( x 0 ) , ( x 1 , f ( x 1 ) ) , ( x 2 , f ( x 2 ) ) ) … ( x n − 1 , f ( x n − 1 ) ) , ( x n , f ( x n ) ) } f(x) = \{(x_0, f(x_0), (x_1, f(x_1)), (x_2, f(x_2))) \dots (x_{n - 1}, f(x_{n - 1})), (x_n, f(x_n)) \} f(x)={(x0,f(x0),(x1,f(x1)),(x2,f(x2)))(xn1,f(xn1)),(xn,f(xn))}

有离散傅里叶变换 D F T DFT DFT(把一个多项式从系数表示变成点值表示), I D F T IDFT IDFT(把一个多项式从点值表示变成系数表示),

F F T FFT FFT,就是通过选取某些特殊 x x x点,来加速 D F T , I D F T DFT, IDFT DFT,IDFT的一种方法。

点值表示法的多项式相乘:

F ( x ) = f ( x ) g ( x ) F(x) = f(x) g(x) F(x)=f(x)g(x)

F ( x ) = { ( x 0 , f ( x 0 ) g ( x 0 ) ) , ( x 1 , f ( x 1 ) g ( x 1 ) ) , ( x 2 , f ( x 2 ) g ( x 2 ) ) … ( x n − 1 , f ( x n − 1 ) g ( x n − 1 ) ) , ( x n , f ( x n ) g ( x n ) ) } F(x) = \{(x_0, f(x_0)g(x_0)), (x_1, f(x_1)g(x_1)), (x_2, f(x_2)g(x_2)) \dots (x_{n - 1}, f(x_{n - 1})g(x_{n - 1})), (x_n, f(x_n)g(x_n)) \} F(x)={(x0,f(x0)g(x0)),(x1,f(x1)g(x1)),(x2,f(x2)g(x2))(xn1,f(xn1)g(xn1)),(xn,f(xn)g(xn))}

由此我们想要得到两个多项式相乘的系数,只需要先对两个多项式进行 D F T DFT DFT,然后对应的点值相乘,再做一次 I D F T IDFT IDFT,即可求得系数。

引入复数

两个复数相乘的结果为,模长相乘,辐角相加,证明如下:

有两复数 A ( a cos ⁡ θ 1 , a sin ⁡ θ 1 i ) , B ( b cos ⁡ θ 2 , b sin ⁡ θ 2 i ) A(a \cos \theta_1, a \sin \theta_1 i), B(b \cos \theta_2, b \sin \theta_2i) A(acosθ1,asinθ1i),B(bcosθ2,bsinθ2i),用极角 + 模长来表示。

两复数相乘有 A × B = ( a b ( cos ⁡ θ 1 cos ⁡ θ 2 − sin ⁡ θ 1 sin ⁡ θ 2 ) , a b ( sin ⁡ θ 1 cos ⁡ θ 2 + cos ⁡ θ 1 sin ⁡ θ 2 ) i ) = ( a b cos ⁡ ( θ 1 + θ 2 ) , a b sin ⁡ ( θ 1 + θ 2 ) i ) A \times B = (ab(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2), ab(\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2) i) = (ab \cos (\theta_1 + \theta_2), ab \sin (\theta_1 + \theta_2) i) A×B=(ab(cosθ1cosθ2sinθ1sinθ2),ab(sinθ1cosθ2+cosθ1sinθ2)i)=(abcos(θ1+θ2),absin(θ1+θ2)i)

引入 n n n次复根,即 x n = 1 x ^ n = 1 xn=1,这样的解显然有 n n n个,设 w n i = e 2 π n i w_{n} ^{i} = e ^{\frac{2 \pi}{n} i} wni=en2πi,在复平面内即是把一个圆分成了 n n n等份。

我们取 n n n等分的第一个交所对应的向量 w n = cos ⁡ ( 2 π n ) + sin ⁡ ( 2 π n ) i w_n = \cos(\frac{2 \pi}{n}) + \sin(\frac{2 \pi}{n}) i wn=cos(n2π)+sin(n2π)i,则其他复根都可用 w n w_n wn i i i次幂来表示。

快速傅里叶变换

考虑如何分治求解:

f ( x ) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4 + a 5 x 5 + a 6 x 6 a 7 x 7 f(x) = a_0 + a_1 x + a_2 x ^ 2 + a_3 x ^ 3 + a_4 x ^ 4 + a_5 x ^ 5 + a_6 x ^ 6 a_ 7 x ^ 7 f(x)=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6a7x7

按照 x x x的次幂,分奇偶,再在右边提出一个 x x x

f ( x ) = ( a 0 + a 2 x 2 + a 4 x 4 + a 6 x 6 ) + x ( a 1 + a 3 x 2 + a 5 x 4 + a 7 x 6 ) f(x) = (a_0 + a_2 x ^ 2 + a_4 x ^ 4 + a_6 x ^ 6) + x (a_1 + a_3 x ^ 2 + a_5 x ^ 4 + a_7 x ^ 6) f(x)=(a0+a2x2+a4x4+a6x6)+x(a1+a3x2+a5x4+a7x6)

G ( x ) = a 0 + a 2 x + a 4 x 2 + a 6 x 3 G(x) = a_0 + a_2 x + a_4 x ^ 2 + a_6 x ^ 3 G(x)=a0+a2x+a4x2+a6x3

H ( x ) = a 1 + a 3 x + a 5 x 2 + a 7 x 3 H(x) = a_1 + a_3 x + a_5 x ^ 2 + a_7 x ^ 3 H(x)=a1+a3x+a5x2+a7x3

f ( x ) = G ( x 2 ) + x H ( x 2 ) f(x) = G(x ^ 2) + x H(x ^ 2) f(x)=G(x2)+xH(x2)

由单位复根有

D F T ( f ( w n k ) ) = D F T ( G ( w n 2 k ) ) + w n k D F T ( H ( w n 2 k ) ) = D F T ( G ( w n 2 k ) ) + w n k D F T ( H ( w n 2 k ) ) DFT(f(w _n ^ k)) = DFT(G(w _n ^{2k})) + w_n ^ k DFT(H(w _n ^{2k})) = DFT(G(w _{\frac{n}{2}} ^ k)) + w_n ^ k DFT(H(w_{\frac{n}{2}} ^ k)) DFT(f(wnk))=DFT(G(wn2k))+wnkDFT(H(wn2k))=DFT(G(w2nk))+wnkDFT(H(w2nk))

D F T ( f ( w n k + n 2 ) ) = D F T ( G ( w n 2 k ) ) − w n k D F T ( H ( w n 2 k ) ) DFT(f(w _n ^{k + \frac{n}{2}})) = DFT(G(w_{\frac{n}{2}} ^ k)) - w_n ^ k DFT(H(w _{\frac{n}{2}} ^ k)) DFT(f(wnk+2n))=DFT(G(w2nk))wnkDFT(H(w2nk))

由此,求出 D F T ( G ( w n 2 k ) ) DFT(G(w _{\frac{n}{2}} ^k)) DFT(G(w2nk)) D F T ( H ( w n 2 k ) ) DFT(H(w_{\frac{n}{2}} ^ k)) DFT(H(w2nk))即可知 D F T ( f ( w n k ) ) , D F T ( f ( w n k + n 2 ) ) DFT(f(w _n ^ k)), DFT(f(w _n ^{k + \frac{n}{2}})) DFT(f(wnk)),DFT(f(wnk+2n))然后对 G , H G, H G,H再分别递归求解即可。

快速傅里叶逆变换

把单位复根值代入多项式,得到的是如下结果:

[ y 0 y 1 y 2 ⋮ y n − 2 y n − 1 ] \left[ \begin{matrix} y_0\\ y_1\\ y_2\\ \vdots\\ y_{n - 2}\\ y_{n - 1}\\ \end{matrix} \right] y0y1y2yn2yn1 = [ 1 1 1 ⋯ 1 1 1 w n 1 w n 2 ⋯ w n n − 2 w n n − 1 1 w n 2 w n 4 ⋯ w n 2 ( n − 2 ) w n 2 ( n − 1 ) ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 1 w n n − 2 w n 2 ( n − 2 ) ⋯ w n ( n − 2 ) ( n − 2 ) w n ( n − 1 ) ( n − 2 ) 1 w n n − 1 w n 2 ( n − 1 ) ⋯ w n ( n − 2 ) ( n − 1 ) w n ( n − 1 ) ( n − 1 ) ] \left[ \begin{matrix} 1 & 1 & 1 & \cdots & 1 & 1\\ 1 & w_n ^ 1 & w_n ^ 2 & \cdots & w_n ^ {n - 2} & w_n ^{n - 1}\\ 1 & w_n ^ 2 & w_n ^ 4 & \cdots & w_n ^ {2(n - 2)} & w_n ^{2(n - 1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 1 & w_n ^{n - 2} & w_n ^ {2(n - 2)} & \cdots & w_n ^{(n - 2)(n - 2)} & w_n ^{(n - 1)(n - 2)}\\ 1 & w_n ^{n - 1} & w_n ^ {2(n - 1)} & \cdots & w_n ^{(n - 2)(n - 1)} & w_n ^{(n - 1)(n - 1)}\\ \end{matrix} \right] 111111wn1wn2wnn2wnn11wn2wn4wn2(n2)wn2(n1)1wnn2wn2(n2)wn(n2)(n2)wn(n2)(n1)1wnn1wn2(n1)wn(n1)(n2)wn(n1)(n1) [ a 0 a 1 a 2 ⋮ a n − 2 a n − 1 ] \left[ \begin{matrix} a_0\\ a_1\\ a_2\\ \vdots\\ a_{n - 2}\\ a_{n - 1}\\ \end{matrix} \right] a0a1a2an2an1

经过 D F T DFT DFT我们已经得到了左边的矩阵,考虑如何变换得到右边的系数矩阵,线性代数我们知道,只要在左边乘上一个中间大矩阵的逆,我们即可得到右边的系数矩阵。

由于这个矩阵的元素非常特殊,他的逆矩阵也有特殊的性质,就是每一项取倒数,再除以 n n n,就能得到他的逆矩阵。

每一项取倒数有 1 w n = w n − 1 = e − 2 π i n = cos ⁡ ( 2 π n ) + i sin ⁡ ( − 2 π n ) \frac{1}{w_n} = w_{n} ^{-1} = e ^{-\frac{2 \pi i}{n}} = \cos(\frac{2 \pi}{n}) + i \sin (- \frac{2 \pi}{n}) wn1=wn1=en2πi=cos(n2π)+isin(n2π),所以我们只要将这个代入做一次 D F T DFT DFT,也就是 I D F T IDFT IDFT,最后再对整体除以 n n n即可得到系数矩阵。

对以上进行证明

f ( x ) = ∑ i = 0 n − 1 a i x i f(x) = \sum\limits_{i = 0} ^{n - 1} a_i x ^ i f(x)=i=0n1aixi y i = f ( w n i ) y_i = f(w_n ^ i) yi=f(wni),构造 A ( x ) = ∑ i = 0 n − 1 y i x i A(x) = \sum\limits_{i = 0} ^{n - 1}y_i x ^ i A(x)=i=0n1yixi,将 b i = w n − i b_i = w_{n} ^{-i} bi=wni代入多项式 A ( x ) A(x) A(x)

A ( b k ) = ∑ i = 0 n − 1 y i w n − i k = ∑ i = 0 n 1 w n − i k ∑ j = 0 n − 1 a j w n i j = ∑ j = 0 n − 1 a j ∑ i = 0 n − 1 ( w n j − k ) i A(b_k) = \sum\limits_{i = 0} ^{n - 1} y_i w_n ^{-ik} = \sum\limits_{i = 0} ^{n 1}w_n ^{-ik} \sum\limits_{j = 0} ^{n - 1} a_j w_{n} ^{ij} = \sum\limits_{j = 0} ^{n - 1} a_j\sum\limits_{i = 0} ^{n - 1} (w_{n} ^{j - k}) ^ i A(bk)=i=0n1yiwnik=i=0n1wnikj=0n1ajwnij=j=0n1aji=0n1(wnjk)i

S ( w n a ) = ∑ i = 0 n − 1 ( w n a ) i S(w_{n} ^ a) = \sum\limits _{i = 0} ^{n - 1} (w_{n} ^{a}) ^ i S(wna)=i=0n1(wna)i

显然有 a = 0 a = 0 a=0 S ( w n a ) = n S(w_n ^ a) = n S(wna)=n

a ≠ 0 a \neq 0 a=0,时我们取 S ( w n a ) , w n a S ( w n a ) S(w_n ^ a),w_n ^ a S(w_n ^ a) S(wna),wnaS(wna),两者相减,除以一个系数有 S ( w n a ) = ∑ i = 1 n ( w n a ) i − ∑ i = 0 n − 1 ( w n a ) i w n a − 1 = ( w n a ) n − ( w n a ) 0 w n a − 1 = 0 S(w_n ^ a) = \frac{\sum\limits_{i = 1} ^{n} (w_n ^ a) ^ i - \sum\limits_{i = 0} ^{n - 1} (w_n ^ a) ^ i}{w_n ^ a - 1} = \frac{(w_n ^ a) ^ n - (w_n ^ a) ^ 0}{w_n ^ a - 1} = 0 S(wna)=wna1i=1n(wna)ii=0n1(wna)i=wna1(wna)n(wna)0=0

所以有 S ( w n a ) = [ a = 1 ] S(w_n ^ a) = [a = 1] S(wna)=[a=1]

A ( b k ) = a k × n A(b_k) = a_k \times n A(bk)=ak×n

仔细想想,这个证明,就是把我们 D F T DFT DFT过程中得到的点值作为系数去做一遍 D F T DFT DFT,得到的也就是 A ( x ) A(x) A(x)的点值表达式,同时对其除以 n n n,也就是 f ( x ) f(x) f(x)的系数表达式了。

如何优化(蝴蝶变换)

分治过程中考虑系数如何变换
{ a 0 , a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 } { a 0 , a 2 , a 4 , a 6 } { a 1 , a 3 , a 5 , a 7 } { a 0 , a 4 } { a 2 , a 6 } { a 1 , a 5 } { a 3 , a 7 } { a 0 } { a 4 } { a 2 } { a 6 } { a 1 } { a 5 } { a 3 } { a 7 } \{a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7\}\\ \{a_0, a_2, a_4, a_6\}\{a_1, a_3, a_5, a_7\}\\ \{a_0, a_4\}\{a_2, a_6\}\{a_1, a_5\}\{a_3, a_7\}\\ \{a_0\}\{a_4\}\{a_2\}\{a_6\}\{a_1\}\{a_5\}\{a_3\}\{a_7\}\\ {a0,a1,a2,a3,a4,a5,a6,a7}{a0,a2,a4,a6}{a1,a3,a5,a7}{a0,a4}{a2,a6}{a1,a5}{a3,a7}{a0}{a4}{a2}{a6}{a1}{a5}{a3}{a7}

这个过程中有一个规律,例如 1 = 001 1 = 001 1=001,倒置后变成了 100 100 100 4 4 4,也即是最后 a 1 a_1 a1所在的位置。

r [ i ] r[i] r[i]表示 i i i翻转之后的数字,考虑如何从小到大递推得到 r [ i ] r[i] r[i],有 r [ 0 ] = 0 r[0] = 0 r[0]=0,当我们在求 x x x时,先考虑除个位数以外的数,就是 r [ x > > 1 ] > > 1 r[x >> 1] >> 1 r[x>>1]>>1了,如果个位是 1 1 1则加上 l i m > > 1 lim >> 1 lim>>1,就有了如下代码

void change(int lim) {
    for (int i = 0; i < lim; i++) {
        r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
    }
}

真正可用的 F F T FFT FFT代码

P3803 【模板】多项式乘法(FFT)

#include <bits/stdc++.h>

using namespace std;

struct Complex {
  double r, i;

  Complex(double _r = 0, double _i = 0) : r(_r), i(_i) {}
};

Complex operator + (const Complex &a, const Complex &b) {
  return Complex(a.r + b.r, a.i + b.i);
}

Complex operator - (const Complex &a, const Complex &b) {
  return Complex(a.r - b.r, a.i - b.i);
}

Complex operator * (const Complex &a, const Complex &b) {
  return Complex(a.r * b.r - a.i * b.i, a.r * b.i + a.i * b.r);
}

Complex operator / (const Complex &a, const Complex &b) {
  return Complex((a.r * b.r + a.i * b.i) / (b.r * b.r + b.i * b.i), (a.i * b.r - a.r * b.i) / (b.r * b.r + b.i * b.i));
}

typedef long long ll;

const int N = 5e6 + 10;

int r[N], n, m;

Complex a[N], b[N];

void get_r(int lim) {
  for (int i = 0; i < lim; i++) {
    r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
  }
}

void FFT(Complex *f, int lim, int rev) {
  for (int i = 0; i < lim; i++) {
    if (i < r[i]) {
      swap(f[i], f[r[i]]);
    }
  }
  const double pi = acos(-1.0);
  for (int mid = 1; mid < lim; mid <<= 1) {
    Complex wn = Complex(cos(pi / mid), rev * sin(pi / mid));
    for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
      Complex w = Complex(1, 0);
      for (int k = 0; k < mid; k++, w = w * wn) {
        Complex x = f[cur + k], y = w * f[cur + mid + k];
        f[cur + k] = x + y, f[cur + mid + k] = x - y;
      }
    }
  }
  if (rev == -1) {
    for (int i = 0; i < lim; i++) {
      a[i].r /= lim;
    }
  }
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  scanf("%d %d", &n, &m);
  n += 1, m += 1;
  for (int i = 0; i < n; i++) {
    scanf("%lf", &a[i].r);
  }
  for (int i = 0; i < m; i++) {
    scanf("%lf", &b[i].r);
  }
  int lim = 1;
  while (lim <= n + m) {
    lim <<= 1;
  }
  get_r(lim);
  FFT(a, lim, 1);
  FFT(b, lim, 1);
  for (int i = 0; i < lim; i++) {
    a[i] = a[i] * b[i];
  }
  FFT(a, lim, -1);
  for (int i = 0; i < n + m - 1; i++) {
    printf("%lld ", ll(a[i].r + 0.5));
  }
  puts("");
  return 0;
}

快速数论变换(NTT)

#include <bits/stdc++.h>

using namespace std;

const int N = 5e6 + 10, mod = 998244353;

int a[N], b[N], r[N], n, m;

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * ans * n % mod;
    }
    a = 1ll * a * a % mod;
    n >>= 1;
  }
  return ans;
}

void get_r(int lim) {
  for (int i = 0; i < lim; i++) {
    r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
  }
}

void NTT(int *f, int lim, int rev) {
  for (int i = 0; i < lim; i++) {
    if (i < r[i]) {
      swap(f[i], f[r[i]]);
    }
  }
  for (int mid = 1; mid < lim; mid <<= 1) {
    int wn = quick_pow(3, (mod - 1) / (mid << 1));
    for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
      int w = 1;
      for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {
        int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;
        f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;
      }
    }
  }
  if (rev == -1) {
    int inv = quick_pow(lim, mod - 2);
    reverse(f + 1, f + lim);
    for (int i = 0; i < lim; i++) {
      f[i] = 1ll * f[i] * inv % mod;
    }
  }
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  return 0;
}

多项式求逆

f ( x ) g ( x ) ≡ 1 ( m o d x n ) f(x) g(x) \equiv 1 \pmod {x ^ n} f(x)g(x)1(modxn),称 f ( x ) f(x) f(x) g ( x ) g(x) g(x)或者 g ( x ) g(x) g(x) f ( x ) f(x) f(x) x n x ^ n xn意义下的逆元。

下面我们讨论给定 f ( x ) f(x) f(x),求其逆 f − 1 ( x ) f ^{-1}(x) f1(x)

倍增求解

假设我们已经求得 f ( x ) f(x) f(x) x ⌈ n 2 ⌉ x ^{\lceil \frac{n}{2}} \rceil x2n下的逆元 f 0 − 1 ( x ) f_0 ^{-1} (x) f01(x),要求 f − 1 ( x ) f ^{-1}(x) f1(x),即膜 x n x ^{n} xn下的逆元,则

f ( x ) f 0 − 1 ( x ) ≡ 1 ( m o d x ⌈ n 2 ⌉ ) f(x) f_0 ^{-1}(x) \equiv 1 \pmod{x ^{\lceil\frac{n}{2}\rceil} } f(x)f01(x)1(modx2n)

显然 f ( x ) f − 1 ( x ) ≡ 1 ( m o d x ⌈ n 2 ⌉ ) f(x) f^{-1}(x) \equiv 1 \pmod {x ^{ \lceil\frac{n}{2}\rceil}} f(x)f1(x)1(modx2n)也是成立的

对两边同时乘以 f 0 − 1 ( x ) f_0 ^{-1}(x) f01(x)并移项有

f − 1 ( x ) − f 0 − 1 ( x ) ≡ 0 ( m o d x ⌈ n 2 ⌉ ) f ^{-1}(x) - f_0 ^{-1}(x) \equiv 0 \pmod{x ^{\lceil\frac{n}{2}\rceil}} f1(x)f01(x)0(modx2n)

对两边同时开方得到

f − 2 ( x ) − 2 f − 1 f 0 − 1 ( x ) + f 0 − 2 ( x ) ≡ 0 ( m o d x n ) f ^{-2}(x) - 2 f^{-1} f_0 ^{-1}(x) + f_0 ^{-2}(x) \equiv 0 \pmod {x ^n} f2(x)2f1f01(x)+f02(x)0(modxn)

我们再对两边乘上一个 f ( x ) f(x) f(x),则有

f − 1 ( x ) − 2 f 0 − 1 + f ( x ) f 0 − 2 ( x ) ≡ 0 ( m o d x n ) f ^{-1}(x) - 2 f_0 ^{-1} + f(x) f_0 ^{-2}(x) \equiv 0 \pmod{x ^n} f1(x)2f01+f(x)f02(x)0(modxn)

再对其进行移项可得

f − 1 ( x ) ≡ f 0 − 1 ( x ) ( 2 − f ( x ) f 0 − 1 ( x ) ) ( m o d x n ) f ^{-1}(x) \equiv f_0 ^{-1}(x)\left( 2 - f(x) f_0 ^{-1}(x) \right) \pmod {x ^n} f1(x)f01(x)(2f(x)f01(x))(modxn)

由此我们递归求解即可。

#include <bits/stdc++.h>

using namespace std;

const int N = 1e6 + 10, mod = 998244353;

int a[N], b[N], c[N], r[N], n;

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * ans * a % mod;
    }
    a = 1ll * a * a % mod;
    n >>= 1;
  }
  return ans;
}

void get_r(int lim) {
  for (int i = 0; i < lim; i++) {
    r[i] = ((i & 1) * (lim >> 1)) + (r[i >> 1] >> 1);
  }
}

void NTT(int *f, int lim, int rev) {
  for (int i = 0; i < lim; i++) {
    if (i < r[i]) {
      swap(f[i], f[r[i]]);
    }
  }
  for (int mid = 1; mid < lim; mid <<= 1) {
    int wn = quick_pow(3, (mod - 1) / (mid << 1));
    for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
      int w = 1;
      for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {
        int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;
        f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;
      }
    }
  }
  if (rev == -1) {
    int inv = quick_pow(lim, mod - 2);
    reverse(f + 1, f + lim);
    for (int i = 0; i < lim; i++) {
      f[i] = 1ll * inv * f[i] % mod;
    }
  }
}

void polyinv(int *a, int *b, int n) {
  if (n == 1) {
    b[0] = quick_pow(a[0], mod - 2);
    return ;
  }
  polyinv(a, b, n + 1 >> 1);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  for (int i = 0; i < n; i++) {
    c[i] = a[i];
  }
  for (int i = n; i < lim; i++) {
    c[i] = 0;
  }
  NTT(b, lim, 1);
  NTT(c, lim, 1);
  for (int i = 0; i < lim; i++) {
    int cur = (2 - 1ll * c[i] * b[i] % mod + mod) % mod;
    b[i] = 1ll * b[i] * cur % mod;
  }
  NTT(b, lim, -1);
  for (int i = n; i < lim; i++) {
    b[i] = 0;
  }
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  scanf("%d", &n);
  for (int i = 0; i < n; i++) {
    scanf("%d", &a[i]);
  }
  polyinv(a, b, n);
  for (int i = 0; i < n; i++) {
    printf("%d%c", b[i], i + 1 == n ? '\n' : ' ');
  }
  return 0;
}

多项式开根

给定多项式 g ( x ) g(x) g(x),求 f ( x ) f(x) f(x),满足 f 2 ( x ) = g ( x ) f ^ 2(x) = g(x) f2(x)=g(x)

假设我们已经得到了 g ( x ) g(x) g(x),膜 x ⌈ n 2 ⌉ x ^{\lceil \frac{n}{2} \rceil} x2n下的根 f 0 ( x ) f_0 (x) f0(x),要求膜 x n x ^ n xn下的根 f ( x ) f(x) f(x)

f 0 2 ( x ) ≡ g ( x ) ( m o d x ⌈ n 2 ⌉ ) f_0 ^2(x) \equiv g(x) \pmod {x ^{\lceil \frac{n}{2} \rceil}} f02(x)g(x)(modx2n)

移项再开方有 ( f 0 2 ( x ) − g ( x ) ) 2 ≡ 0 ( m o d x n ) \left(f_0 ^2(x) - g(x) \right) ^ 2 \equiv 0 \pmod {x ^ n} (f02(x)g(x))20(modxn)

则, ( f 0 2 ( x ) + g ( x ) ) 2 ≡ 4 f 0 2 ( x ) g ( x ) ( m o d x n ) \left( f_0 ^ 2(x) + g(x) \right) ^ 2 \equiv 4 f_0 ^ 2(x) g(x) \pmod {x ^ n} (f02(x)+g(x))24f02(x)g(x)(modxn)

g ( x ) ≡ ( f 0 2 ( x ) + g ( x ) 2 f 0 ( x ) ) 2 ( m o d x n ) g(x) \equiv \left(\frac{f_0 ^ 2(x) + g(x)}{2f_0 (x)} \right) ^ 2 \pmod {x ^ n} g(x)(2f0(x)f02(x)+g(x))2(modxn)

所以 f ( x ) ≡ f 0 2 ( x ) + g ( x ) 2 f 0 ( x ) ( m o d x n ) f(x) \equiv \frac{f_0 ^ 2(x) + g(x)}{2f_0(x)} \pmod {x ^ n} f(x)2f0(x)f02(x)+g(x)(modxn)

所以有 f ( x ) ≡ 2 − 1 f 0 ( x ) + 2 − 1 f 0 − 1 ( x ) g ( x ) ( m o d x n ) f(x) \equiv 2 ^{-1} f_0 (x) + 2 ^{-1} f_0 ^{-1}(x) g(x) \pmod {x ^ n} f(x)21f0(x)+21f01(x)g(x)(modxn)

对于 g ( 0 ) = 1 g(0) = 1 g(0)=1的特殊情况

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int N = 5e6 + 10, mod = 998244353, inv2 = mod + 1 >> 1;

int a[N], b[N], c[N], d[N], r[N];

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * ans * a % mod;
    }
    a = 1ll *  a * a % mod;
    n >>= 1;
  }
  return ans;
}

void get_r(int lim) {
  for (int i = 0; i < lim; i++) {
    r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
  }
}

void NTT(int *f, int lim, int rev) {
  for (int i = 0; i < lim; i++) {
    if (i < r[i]) {
      swap(f[i], f[r[i]]);
    }
  }
  for (int mid = 1; mid < lim; mid <<= 1) {
    int wn = quick_pow(3, (mod - 1) / (mid << 1));
    for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
      int w = 1;
      for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {
        int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;
        f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;
      }
    }
  }
  if (rev == -1) {
    int inv = quick_pow(lim, mod - 2);
    reverse(f + 1, f + lim);
    for (int i = 0; i < lim; i++) {
      f[i] = 1ll * f[i] * inv % mod;
    }
  }
}

void polyinv1(int *a, int *b, int n) {
  if (n == 1) {
    b[0] = quick_pow(a[0], mod - 2);
    return ;
  }
  polyinv1(a, b, n + 1 >> 1);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  for (int i = 0; i < n; i++) {
    c[i] = a[i];
  }
  for (int i = n; i < lim; i++) {
    c[i] = 0;
  }
  NTT(b, lim, 1);
  NTT(c, lim, 1);
  for (int i = 0; i < lim; i++) {
    int cur = (2 - 1ll * c[i] * b[i] % mod + mod) % mod;
    b[i] = 1ll * b[i] * cur % mod;
  }
  NTT(b, lim, -1);
  for (int i = n; i < lim; i++) {
    b[i] = 0;
  }
}

void polysqrt(int *a, int *b, int n) {
  if (n == 1) {
    b[0] = 1;
    return ;
  }
  polysqrt(a, b, n + 1 >> 1);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  for (int i = 0; i < lim; i++) {
    d[i] = 0;
  }
  polyinv1(b, d, n);
  for (int i = 0; i < n; i++) {
    c[i] = a[i];
  }
  for (int i = n; i < lim; i++) {
    c[i] = 0;
  }
  get_r(lim);
  NTT(b, lim, 1);
  NTT(c, lim, 1);
  NTT(d, lim, 1);
  for (int i = 0; i < lim; i++) {
    b[i] = (1ll * inv2 * b[i] % mod + 1ll * inv2 * d[i] % mod * c[i] % mod) % mod; 
  }
  NTT(b, lim, -1);
  for (int i = n; i < lim; i++) {
    b[i] = 0;
  }
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  int n;
  scanf("%d", &n);
  for (int i = 0; i < n; i++) {
    scanf("%d", &a[i]);
  }
  polysqrt(a, b, n);
  for (int i = 0; i < n; i++) {
    printf("%d%c", b[i], i + 1 == n ? '\n' : ' ');
  }
  return 0;
}

二次剩余解一般情况

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int N = 5e6 + 10, mod = 998244353, inv2 = mod + 1 >> 1;

int a[N], b[N], c[N], d[N], r[N];

namespace Quadratic_residue {
  struct Complex {
    int r, i;

    Complex(int _r = 0, int _i = 0) : r(_r), i(_i) {}
  };

  int I2;

  Complex operator * (const Complex &a, Complex &b) {
    return Complex((1ll * a.r * b.r % mod  + 1ll * a.i * b.i % mod * I2 % mod) % mod, (1ll * a.r * b.i % mod + 1ll * a.i * b.r % mod) % mod);
  }

  Complex quick_pow(Complex a, int n) {
    Complex ans = Complex(1, 0);
    while (n) {
      if (n & 1) {
        ans = ans * a;
      }
      a = a * a;
      n >>= 1;
    }
    return ans;
  }

  int get_residue(int n) {
    mt19937 e(233);
    if (n == 0) {
      return 0;
    }
    if(quick_pow(n, (mod - 1) >> 1).r == mod - 1) {
      return -1;
    }
    uniform_int_distribution<int> r(0, mod - 1);
    int a = r(e);
    while(quick_pow((1ll * a * a % mod - n + mod) % mod, (mod - 1) >> 1).r == 1) {
      a = r(e);
    }
    I2 = (1ll * a * a % mod - n + mod) % mod;
    int x = quick_pow(Complex(a, 1), (mod + 1) >> 1).r, y = mod - x;
    if(x > y) swap(x, y);
    return x;
  }
}

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * ans * a % mod;
    }
    a = 1ll *  a * a % mod;
    n >>= 1;
  }
  return ans;
}

void get_r(int lim) {
  for (int i = 0; i < lim; i++) {
    r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
  }
}

void NTT(int *f, int lim, int rev) {
  for (int i = 0; i < lim; i++) {
    if (i < r[i]) {
      swap(f[i], f[r[i]]);
    }
  }
  for (int mid = 1; mid < lim; mid <<= 1) {
    int wn = quick_pow(3, (mod - 1) / (mid << 1));
    for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
      int w = 1;
      for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {
        int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;
        f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;
      }
    }
  }
  if (rev == -1) {
    int inv = quick_pow(lim, mod - 2);
    reverse(f + 1, f + lim);
    for (int i = 0; i < lim; i++) {
      f[i] = 1ll * f[i] * inv % mod;
    }
  }
}

void polyinv1(int *a, int *b, int n) {
  if (n == 1) {
    b[0] = quick_pow(a[0], mod - 2);
    return ;
  }
  polyinv1(a, b, n + 1 >> 1);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  for (int i = 0; i < n; i++) {
    c[i] = a[i];
  }
  for (int i = n; i < lim; i++) {
    c[i] = 0;
  }
  NTT(b, lim, 1);
  NTT(c, lim, 1);
  for (int i = 0; i < lim; i++) {
    int cur = (2 - 1ll * c[i] * b[i] % mod + mod) % mod;
    b[i] = 1ll * b[i] * cur % mod;
  }
  NTT(b, lim, -1);
  for (int i = n; i < lim; i++) {
    b[i] = 0;
  }
}

void polysqrt(int *a, int *b, int n) {
  if (n == 1) {
    b[0] = Quadratic_residue::get_residue(a[0]);
    return ;
  }
  polysqrt(a, b, n + 1 >> 1);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  for (int i = 0; i < lim; i++) {
    d[i] = 0;
  }
  polyinv1(b, d, n);
  for (int i = 0; i < n; i++) {
    c[i] = a[i];
  }
  for (int i = n; i < lim; i++) {
    c[i] = 0;
  }
  get_r(lim);
  NTT(b, lim, 1);
  NTT(c, lim, 1);
  NTT(d, lim, 1);
  for (int i = 0; i < lim; i++) {
    b[i] = (1ll * inv2 * b[i] % mod + 1ll * inv2 * d[i] % mod * c[i] % mod) % mod; 
  }
  NTT(b, lim, -1);
  for (int i = n; i < lim; i++) {
    b[i] = 0;
  }
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  int n;
  scanf("%d", &n);
  for (int i = 0; i < n; i++) {
    scanf("%d", &a[i]);
  }
  polysqrt(a, b, n);
  for (int i = 0; i < n; i++) {
    printf("%d%c", b[i], i + 1 == n ? '\n' : ' ');
  }
  return 0;
}

分治FFT

考虑计算这么一个式子 f ( i ) = ∑ j = 1 i f i − j g ( j ) f(i) = \sum\limits_{j = 1} ^{i} f_{i - j}g(j) f(i)=j=1ifijg(j),给定 g ( x ) g(x) g(x),求 f ( x ) f(x) f(x),边界条件 f ( 0 ) = 1 f(0) = 1 f(0)=1

假设我们已经算出 [ l , m i d ] [l, mid] [l,mid],考虑计算其对 [ m i d + 1 , r ] [mid + 1, r] [mid+1,r]的贡献 w ( i ) w(i) w(i)

w ( x ) = ∑ i = l m i d f ( i ) g ( x − i ) w(x) = \sum\limits_{i = l} ^{mid} f(i) g(x - i) w(x)=i=lmidf(i)g(xi),因为 [ m i d + 1 , r ] [mid + 1, r] [mid+1,r]区间还没开始计算,所以 f ( i ) = 0 , i ∈ [ m i d , x − 1 ] f(i) = 0, i \in [mid, x - 1] f(i)=0,i[mid,x1],则 w ( x ) = ∑ i = l x − 1 f ( i ) g ( x − i ) w(x) = \sum\limits_{i = l} ^{x - 1} f(i) g(x - i) w(x)=i=lx1f(i)g(xi)

我们设 a ( i ) = f ( i + l ) , b ( i ) = g ( i + 1 ) a(i) = f(i + l), b(i) = g(i + 1) a(i)=f(i+l),b(i)=g(i+1),上式 w ( x ) = ∑ i = 0 x − l − 1 a ( i ) b ( x − l − i + 1 ) w(x) = \sum\limits_{i = 0} ^{x - l - 1} a(i)b(x - l - i + 1) w(x)=i=0xl1a(i)b(xli+1)

w ( x ) = c ( x − l + 1 ) = ∑ i = 0 x − l − 1 a ( i ) b ( x − l − i + 1 ) w(x) = c(x - l + 1) = \sum\limits_{i = 0} ^{x - l - 1}a(i) b(x - l - i + 1) w(x)=c(xl+1)=i=0xl1a(i)b(xli+1)

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int N = 5e6 + 10, mod = 998244353, inv2 = mod + 1 >> 1;

int a[N], b[N], c[N], d[N], r[N];

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * ans * a % mod;
    }
    a = 1ll *  a * a % mod;
    n >>= 1;
  }
  return ans;
}

void get_r(int lim) {
  for (int i = 0; i < lim; i++) {
    r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
  }
}

void NTT(int *f, int lim, int rev) {
  for (int i = 0; i < lim; i++) {
    if (i < r[i]) {
      swap(f[i], f[r[i]]);
    }
  }
  for (int mid = 1; mid < lim; mid <<= 1) {
    int wn = quick_pow(3, (mod - 1) / (mid << 1));
    for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
      int w = 1;
      for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {
        int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;
        f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;
      }
    }
  }
  if (rev == -1) {
    int inv = quick_pow(lim, mod - 2);
    reverse(f + 1, f + lim);
    for (int i = 0; i < lim; i++) {
      f[i] = 1ll * f[i] * inv % mod;
    }
  }
}

void DACFFT(int l, int r) {
  if (l == r) {
    return ;
  }
  int mid = l + r >> 1;
  DACFFT(l, mid);
  for (int i = 0; i <= mid - l; i++) {
    c[i] = b[i + l];
  }
  for (int i = 0; i < r - l; i++) {
    d[i] = a[i + 1];
  }
  int lim = 1;
  while (lim <= r - l + mid - l + 1) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(c, lim, 1);
  NTT(d, lim, 1);
  for (int i = 0; i < lim; i++) {
    c[i] = 1ll * c[i] * d[i] % mod;
  }
  NTT(c, lim, -1);
  for (int i = mid - l; i <= r - l - 1; i++) {
    b[i + l + 1] = (b[i + l + 1] + c[i]) % mod;
  }
  for (int i = 0; i < lim; i++) {
    c[i] = d[i] = 0;
  }
  DACFFT(mid + 1, r);
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  int n;
  scanf("%d", &n);
  for (int i = 1; i < n; i++) {
    scanf("%d", &a[i]);
  }
  b[0] = 1;
  DACFFT(0, n - 1);
  for (int i = 0; i < n; i++) {
    printf("%d%c", b[i], i == n ? '\n' : ' ');
  }
  return 0;
}

牛顿迭代

迭代求函数零点

对于 f ( x ) f(x) f(x),任意选取一个点 ( x 0 , f ( x 0 ) ) (x_0, f(x_0)) (x0,f(x0))作为当前我们预估的零点,取他的泰勒展开前两项 g ( x ) = f ( 0 ) + f ′ ( x ) ( x − x 0 ) g(x) = f(0) + f'(x)(x - x_0) g(x)=f(0)+f(x)(xx0)

解出方程 g ( x ) = 0 g(x) = 0 g(x)=0,得到 x 1 x_1 x1,然后重复上述操作,最后 x n x_n xn会趋近于我们所要的正解。

考虑如何应用到多项式上

边界条件 n = 1 n = 1 n=1时, [ x 0 ] g ( f ( x ) ) = 0 [x ^0]g(f(x)) = 0 [x0]g(f(x))=0,的解单独求出。

假设我们已经求得膜 x ⌈ n 2 ⌉ x ^{\lceil\frac{n}{2} \rceil} x2n下的解 f 0 ( x ) f_0(x) f0(x),要求膜 x n x ^n xn下的解 f ( x ) f(x) f(x),得到该点的泰勒展开:
∑ i = 0 ∞ g ( i ) ( f 0 ( x ) ) i ! ( f ( x ) − f 0 ( x ) ) n f ( x ) − f 0 ( x ) 前 面 的 项 已 经 被 截 了 , 所 以 最 低 次 幂 是 大 于 ⌈ n 2 ⌉ 的 有 ( f ( x ) − f 0 ( x ) ) i ≡ 0 ( m o d x n ) , i > = 2 有 g ( f 0 ( x ) ) + g ′ ( f 0 ( x ) ) ( f ( x ) − f 0 ( x ) ) ≡ 0 ( m o d x n ) f ( x ) ≡ f 0 ( x ) − g ( f 0 ( x ) ) g ′ ( f 0 ( x ) ) ( m o d x n ) \sum_{i = 0} ^{\infty} \frac{g ^{(i)}(f_0(x))}{i !}(f(x) - f_0(x)) ^n\\ f(x) - f_0(x)前面的项已经被截了,所以最低次幂是大于\lceil \frac{n}{2} \rceil的\\ 有(f(x) - f_0 (x)) ^ i \equiv 0 \pmod {x ^ n}, i >= 2\\ 有g(f_0(x)) + g'(f_0(x))(f(x) - f_0(x)) \equiv 0 \pmod {x ^ n}\\ f(x) \equiv f_0(x) - \frac{g(f_0(x))}{g'(f_0(x))} \pmod {x ^ n}\\ i=0i!g(i)(f0(x))(f(x)f0(x))nf(x)f0(x),2n(f(x)f0(x))i0(modxn),i>=2g(f0(x))+g(f0(x))(f(x)f0(x))0(modxn)f(x)f0(x)g(f0(x))g(f0(x))(modxn)

应用

多项式求逆

对 于 给 定 的 h ( x ) , 有 g ( f ( x ) ) = 1 f ( x ) − h ( x ) ≡ 0 ( m o d x n ) f ( x ) ≡ f 0 ( x ) − 1 f 0 ( x ) − h ( x ) − 1 f 0 2 ( x ) ( m o d x n ) f ( x ) ≡ 2 f 0 ( x ) − h ( x ) f 0 2 ( x ) ( m o d x n ) f ( x ) ≡ f 0 ( x ) ( 2 − h ( x ) f 0 ( x ) ) ( m o d x n ) 对于给定的h(x),\\ 有g(f(x)) = \frac{1}{f(x)} - h(x) \equiv 0 \pmod {x ^ n}\\ f(x) \equiv f_0(x) - \frac{\frac{1}{f_0(x)} - h(x)}{-\frac{1}{f_0 ^ 2(x)}} \pmod{x ^n}\\ f(x) \equiv 2f_0(x) - h(x) f_0 ^ 2(x) \pmod {x ^ n}\\ f(x) \equiv f_0(x)(2 - h(x)f_0(x)) \pmod {x ^ n}\\ h(x)g(f(x))=f(x)1h(x)0(modxn)f(x)f0(x)f02(x)1f0(x)1h(x)(modxn)f(x)2f0(x)h(x)f02(x)(modxn)f(x)f0(x)(2h(x)f0(x))(modxn)

多项式开根

对 于 给 定 的 h ( x ) 有 g ( f ( x ) ) = f 2 ( x ) − h ( x ) ≡ 0 ( m o d x n ) f ( x ) ≡ f 0 ( x ) − f 0 2 ( x ) − h ( x ) 2 f 0 ( x ) ( m o d ( ) x n ) f ( x ) ≡ f 0 2 ( x ) + h ( x ) 2 f 0 ( x ) ( m o d x n ) f ( x ) ≡ 2 − 1 f 0 ( x ) + 2 − 1 f 0 − 1 ( x ) h ( x ) ( m o d x n ) 对于给定的h(x)\\ 有g(f(x)) = f ^ 2(x) - h(x) \equiv 0 \pmod {x ^ n}\\ f(x) \equiv f_0(x) - \frac{f_0 ^2(x) - h(x)}{2f_0(x)} \pmod (x ^n)\\ f(x) \equiv \frac{f_0 ^ 2(x) + h(x)}{2f_0(x)} \pmod {x ^ n}\\ f(x) \equiv 2 ^{-1} f_0 (x) + 2 ^{-1} f_0 ^{-1}(x) h(x) \pmod {x ^n}\\ h(x)g(f(x))=f2(x)h(x)0(modxn)f(x)f0(x)2f0(x)f02(x)h(x)(mod()xn)f(x)2f0(x)f02(x)+h(x)(modxn)f(x)21f0(x)+21f01(x)h(x)(modxn)

多项式 exp ⁡ \exp exp

对 于 给 定 的 h ( x ) 有 g ( f ( x ) ) = ln ⁡ f ( x ) − h ( x ) ≡ 0 ( m o d x n ) f ( x ) ≡ f 0 ( x ) − ln ⁡ f 0 ( x ) − h ( x ) 1 f 0 ( x ) ( m o d x n ) f ( x ) ≡ f 0 ( x ) ( 1 − ln ⁡ f 0 ( x ) + h ( x ) ) ( m o d x n ) 对于给定的h(x)\\ 有g(f(x)) = \ln f(x) - h(x) \equiv 0 \pmod {x ^ n}\\ f(x) \equiv f_0(x) - \frac{\ln f_0(x) - h(x)}{\frac{1}{f_0(x)}} \pmod {x ^ n}\\ f(x) \equiv f_0(x)(1 - \ln f_0(x) + h(x)) \pmod {x ^ n}\\ h(x)g(f(x))=lnf(x)h(x)0(modxn)f(x)f0(x)f0(x)1lnf0(x)h(x)(modxn)f(x)f0(x)(1lnf0(x)+h(x))(modxn)

多项式对数函数 ln ⁡ f ( x ) \ln f(x) lnf(x)

如果存在解必然有 [ x 0 ] f ( x ) = 1 [ x ^ 0]f(x) = 1 [x0]f(x)=1

ln ⁡ f ( x ) \ln f(x) lnf(x)求导,有 d ln ⁡ f ( x ) d x ≡ f ′ ( x ) f ( x ) ( m o d x n ) \frac{d \ln f(x)}{dx} \equiv \frac{f'(x)}{f(x)} \pmod {x ^ n} dxdlnf(x)f(x)f(x)(modxn)

d x dx dx乘到右边,再求积分有:
∫ d ln ⁡ f ( x ) ≡ ∫ f ′ ( x ) ) f ( x ) d x ( m o d x n ) ln ⁡ f ( x ) ≡ ∫ f ′ ( x ) f ( x ) ( m o d x n ) \int d \ln f(x) \equiv \int \frac{f'(x))}{f(x)} dx \pmod {x ^ n}\\ \ln f(x) \equiv \int \frac{f'(x)}{f(x)} \pmod {x ^ n}\\ dlnf(x)f(x)f(x))dx(modxn)lnf(x)f(x)f(x)(modxn)
然后只要对先对 f ( x ) f(x) f(x)求个导,求个逆,最后求一次积分即可,整体复杂度 O ( n log ⁡ n ) O(n \log n) O(nlogn)

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int N = 5e6 + 10, mod = 998244353, inv2 = mod + 1 >> 1;

int a[N], b[N], c[N], d[N], r[N], inv[N];

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * ans * a % mod;
    }
    a = 1ll *  a * a % mod;
    n >>= 1;
  }
  return ans;
}

void get_r(int lim) {
  for (int i = 0; i < lim; i++) {
    r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
  }
}

void get_inv(int n) {
  inv[1] = 1;
  for (int i = 2; i < n; i++) {
    inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
  }
}

void NTT(int *f, int lim, int rev) {
  for (int i = 0; i < lim; i++) {
    if (i < r[i]) {
      swap(f[i], f[r[i]]);
    }
  }
  for (int mid = 1; mid < lim; mid <<= 1) {
    int wn = quick_pow(3, (mod - 1) / (mid << 1));
    for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
      int w = 1;
      for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {
        int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;
        f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;
      }
    }
  }
  if (rev == -1) {
    int inv = quick_pow(lim, mod - 2);
    reverse(f + 1, f + lim);
    for (int i = 0; i < lim; i++) {
      f[i] = 1ll * f[i] * inv % mod;
    }
  }
}

void polyinv(int *a, int *b, int n) {
  if (n == 1) {
    b[0] = quick_pow(a[0], mod - 2);
    return ;
  }
  polyinv(a, b, n + 1 >> 1);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  for (int i = 0; i < n; i++) {
    c[i] = a[i];
  }
  for (int i = n; i < lim; i++) {
    c[i] = 0;
  }
  NTT(b, lim, 1);
  NTT(c, lim, 1);
  for (int i = 0; i < lim; i++) {
    int cur = (2 - 1ll * c[i] * b[i] % mod + mod) % mod;
    b[i] = 1ll * b[i] * cur % mod;
  }
  NTT(b, lim, -1);
  for (int i = n; i < lim; i++) {
    b[i] = 0;
  }
}

void derivative(int *a, int *b, int n) {
  for (int i = 0; i < n; i++) {
    b[i] = 1ll * a[i + 1] * (i + 1) % mod;
  }
}

void integrate(int *a, int n) {
  get_inv(n);
  for (int i = n - 1; i >= 1; i--) {
    a[i] = 1ll * a[i - 1] * inv[i] % mod;
  }
  a[0] = 0;
}

void polyln(int *a, int *b, int n) {
  derivative(a, b, n);
  polyinv(a, d, n);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(b, lim, 1);
  NTT(d, lim, 1);
  for (int i = 0; i < lim; i++) {
    b[i] = 1ll * b[i] * d[i] % mod;
  }
  NTT(b, lim, -1);
  integrate(b, n);
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  int n;
  scanf("%d", &n);
  for (int i = 0; i < n; i++) {
    scanf("%d", &a[i]);
  }
  polyln(a, b, n);
  for (int i = 0; i < n; i++) {
    printf("%d%c", b[i], i + 1 == n ? '\n' : ' ');
  }
  return 0;
}

多项式 exp ⁡ \exp exp

牛顿迭代推导式子有$f(x) \equiv f_0(x)(1 - \ln f_0(x) + h(x)) \pmod {x ^ n}\$

#include <bits/stdc++.h>

using namespace std;

const int mod = 998244353, inv2 = mod + 1 >> 1;

namespace Quadratic_residue {
  struct Complex {
    int r, i;

    Complex(int _r = 0, int _i = 0) : r(_r), i(_i) {}
  };

  int I2;

  Complex operator * (const Complex &a, Complex &b) {
    return Complex((1ll * a.r * b.r % mod  + 1ll * a.i * b.i % mod * I2 % mod) % mod, (1ll * a.r * b.i % mod + 1ll * a.i * b.r % mod) % mod);
  }

  Complex quick_pow(Complex a, int n) {
    Complex ans = Complex(1, 0);
    while (n) {
      if (n & 1) {
        ans = ans * a;
      }
      a = a * a;
      n >>= 1;
    }
    return ans;
  }

  int get_residue(int n) {
    mt19937 e(233);
    if (n == 0) {
      return 0;
    }
    if(quick_pow(n, (mod - 1) >> 1).r == mod - 1) {
      return -1;
    }
    uniform_int_distribution<int> r(0, mod - 1);
    int a = r(e);
    while(quick_pow((1ll * a * a % mod - n + mod) % mod, (mod - 1) >> 1).r == 1) {
      a = r(e);
    }
    I2 = (1ll * a * a % mod - n + mod) % mod;
    int x = quick_pow(Complex(a, 1), (mod + 1) >> 1).r, y = mod - x;
    if(x > y) swap(x, y);
    return x;
  }
}

const int N = 1e6 + 10;

int r[N], inv[N], a[N], b[N], c[N], d[N], e[N], t[N], n;

//a是输入数组,b存放多项式逆,c存放多项式开根,d存放多项式对数ln,e存放多项式指数exp,t作为中间转移数组

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * a * ans % mod;
    }
    a = 1ll * a * a % mod;
    n >>= 1;
  }
  return ans;
}

void get_r(int lim) {
  for (int i = 0; i < lim; i++) {
    r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
  }
}

void get_inv(int n) {
  inv[1] = 1;
  for (int i = 2; i <= n; i++) {
    inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
  }
}

void NTT(int *f, int lim, int rev) {
  for (int i = 0; i < lim; i++) {
    if (i < r[i]) {
      swap(f[i], f[r[i]]);
    }
  }
  for (int mid = 1; mid < lim; mid <<= 1) {
    int wn = quick_pow(3, (mod - 1) / (mid << 1));
    for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
      int w = 1;
      for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {
        int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;
        f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;
      }
    }
  }
  if (rev == -1) {
    int inv = quick_pow(lim, mod - 2);
    reverse(f + 1, f + lim);
    for (int i = 0; i < lim; i++) {
      f[i] = 1ll * f[i] * inv % mod;
    }
  }
}

void polyinv(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = quick_pow(f[0], mod - 2);
    return ;
  }
  polyinv(f, g, n + 1 >> 1);
  for (int i = 0; i < n; i++) {
    t[i] = f[i];
  }
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(t, lim, 1);
  NTT(g, lim, 1);
  for (int i = 0; i < lim; i++) {
    int cur = (2 - 1ll * g[i] * t[i] % mod + mod) % mod;
    g[i] = 1ll * g[i] * cur % mod;
    t[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

void polysqrt(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = Quadratic_residue::get_residue(f[0]);
    return ;
  }
  polysqrt(f, g, n + 1 >> 1);
  polyinv(g, b, n);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  for (int i = 0; i < n; i++) {
    t[i] = f[i];
  }
  NTT(g, lim, 1);
  NTT(b, lim, 1);
  NTT(t, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = (1ll * inv2 * g[i] % mod + 1ll * inv2 * b[i] % mod * t[i] % mod) % mod;
    b[i] = t[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

void derivative(int *a, int *b, int n) {
  for (int i = 0; i < n; i++) {
    b[i] = 1ll * a[i + 1] * (i + 1) % mod;
  }
}

void integrate(int *a, int n) {
  for (int i = n - 1; i >= 1; i--) {
    a[i] = 1ll * a[i - 1] * inv[i] % mod;
  }
  a[0] = 0;
}

void polyln(int *f, int *g, int n) {
  polyinv(f, b, n);
  derivative(f, g, n);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(g, lim, 1);
  NTT(b, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = 1ll * g[i] * b[i] % mod;
    b[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
  integrate(g, n);
}

void polyexp(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = 1;
    return ;
  }
  polyexp(f, g, n + 1 >> 1);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  polyln(g, d, n);
  for (int i = 0; i < n; i++) {
    t[i] = (f[i] - d[i] + mod) % mod;
  }
  t[0] = (t[0] + 1) % mod;
  get_r(lim);
  NTT(g, lim, 1);
  NTT(t, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = 1ll * g[i] * t[i] % mod;
    t[i] = d[i] =  0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  scanf("%d", &n);
  for (int i = 0; i < n; i++) {
    scanf("%d", &a[i]);
  }
  get_inv(4 * n);
  polyexp(a, e, n);
  for (int i = 0; i < n; i++) {
    printf("%d%c", e[i], i + 1 == n ? '\n' : ' ');
  }
  return 0;
}

多项式快速幂

给定 f ( x ) f(x) f(x),要求 g ( x ) ≡ f k ( x ) ( m o d x n ) g(x) \equiv f ^{k}(x) \pmod{x ^ n} g(x)fk(x)(modxn)
g ( x ) = exp ⁡ ln ⁡ f k ( x ) = exp ⁡ k ln ⁡ f ( x ) g(x) = \exp ^{\ln f^{k}(x)} = \exp ^{k \ln f(x)}\\ g(x)=explnfk(x)=expklnf(x)

#include <bits/stdc++.h>

using namespace std;

const int mod = 998244353, inv2 = mod + 1 >> 1;

namespace Quadratic_residue {
  struct Complex {
    int r, i;

    Complex(int _r = 0, int _i = 0) : r(_r), i(_i) {}
  };

  int I2;

  Complex operator * (const Complex &a, Complex &b) {
    return Complex((1ll * a.r * b.r % mod  + 1ll * a.i * b.i % mod * I2 % mod) % mod, (1ll * a.r * b.i % mod + 1ll * a.i * b.r % mod) % mod);
  }

  Complex quick_pow(Complex a, int n) {
    Complex ans = Complex(1, 0);
    while (n) {
      if (n & 1) {
        ans = ans * a;
      }
      a = a * a;
      n >>= 1;
    }
    return ans;
  }

  int get_residue(int n) {
    mt19937 e(233);
    if (n == 0) {
      return 0;
    }
    if(quick_pow(n, (mod - 1) >> 1).r == mod - 1) {
      return -1;
    }
    uniform_int_distribution<int> r(0, mod - 1);
    int a = r(e);
    while(quick_pow((1ll * a * a % mod - n + mod) % mod, (mod - 1) >> 1).r == 1) {
      a = r(e);
    }
    I2 = (1ll * a * a % mod - n + mod) % mod;
    int x = quick_pow(Complex(a, 1), (mod + 1) >> 1).r, y = mod - x;
    if(x > y) swap(x, y);
    return x;
  }
}

const int N = 1e6 + 10;

int r[N], inv[N], a[N], b[N], c[N], d[N], e[N], t[N], n;

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * a * ans % mod;
    }
    a = 1ll * a * a % mod;
    n >>= 1;
  }
  return ans;
}

void get_r(int lim) {
  for (int i = 0; i < lim; i++) {
    r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
  }
}

void get_inv(int n) {
  inv[1] = 1;
  for (int i = 2; i <= n; i++) {
    inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
  }
}

void NTT(int *f, int lim, int rev) {
  for (int i = 0; i < lim; i++) {
    if (i < r[i]) {
      swap(f[i], f[r[i]]);
    }
  }
  for (int mid = 1; mid < lim; mid <<= 1) {
    int wn = quick_pow(3, (mod - 1) / (mid << 1));
    for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
      int w = 1;
      for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {
        int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;
        f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;
      }
    }
  }
  if (rev == -1) {
    int inv = quick_pow(lim, mod - 2);
    reverse(f + 1, f + lim);
    for (int i = 0; i < lim; i++) {
      f[i] = 1ll * f[i] * inv % mod;
    }
  }
}

void polyinv(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = quick_pow(f[0], mod - 2);
    return ;
  }
  polyinv(f, g, n + 1 >> 1);
  for (int i = 0; i < n; i++) {
    t[i] = f[i];
  }
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(t, lim, 1);
  NTT(g, lim, 1);
  for (int i = 0; i < lim; i++) {
    int cur = (2 - 1ll * g[i] * t[i] % mod + mod) % mod;
    g[i] = 1ll * g[i] * cur % mod;
    t[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

void polysqrt(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = Quadratic_residue::get_residue(f[0]);
    return ;
  }
  polysqrt(f, g, n + 1 >> 1);
  polyinv(g, b, n);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  for (int i = 0; i < n; i++) {
    t[i] = f[i];
  }
  NTT(g, lim, 1);
  NTT(b, lim, 1);
  NTT(t, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = (1ll * inv2 * g[i] % mod + 1ll * inv2 * b[i] % mod * t[i] % mod) % mod;
    b[i] = t[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

void derivative(int *a, int *b, int n) {
  for (int i = 0; i < n; i++) {
    b[i] = 1ll * a[i + 1] * (i + 1) % mod;
  }
}

void integrate(int *a, int n) {
  for (int i = n - 1; i >= 1; i--) {
    a[i] = 1ll * a[i - 1] * inv[i] % mod;
  }
  a[0] = 0;
}

void polyln(int *f, int *g, int n) {
  polyinv(f, b, n);
  derivative(f, g, n);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(g, lim, 1);
  NTT(b, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = 1ll * g[i] * b[i] % mod;
    b[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
  integrate(g, n);
}

void polyexp(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = 1;
    return ;
  }
  polyexp(f, g, n + 1 >> 1);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  polyln(g, d, n);
  for (int i = 0; i < n; i++) {
    t[i] = (f[i] - d[i] + mod) % mod;
  }
  t[0] = (t[0] + 1) % mod;
  get_r(lim);
  NTT(g, lim, 1);
  NTT(t, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = 1ll * g[i] * t[i] % mod;
    t[i] = d[i] =  0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

/*
  a是输入数组,
  b存放多项式逆,
  c存放多项式开根,
  d存放多项式对数ln,
  e存放多项式指数exp,
  t作为中间转移数组,
  如果要用到polyinv,得提前调用get_inv(n)先预先得到我们想要得到的逆元范围。
*/

char str[N];

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  scanf("%d %s", &n, str + 1);
  for (int i = 0; i < n; i++) {
    scanf("%d", &a[i]);
  }
  int k = 0;
  for (int i = 1; str[i]; i++) {
    k = (1ll * k * 10 + (str[i] - '0')) % mod;
  }
  get_inv(4 * n);
  polyln(a, d, n);
  for (int i = 0; i < n; i++) {
    a[i] = 1ll * d[i] * k % mod;
    d[i] = 0;
  }
  polyexp(a, e, n);
  for (int i = 0; i < n; i++) {
    printf("%d%c", e[i], i + 1 == n ? '\n' : ' ');
  }
  return 0;
}

多项式除法

给定一个 n n n次多项式 F ( x ) F(x) F(x) m m m次多项式 G ( x ) G(x) G(x),要求 R ( x ) , Q ( x ) R(x), Q(x) R(x),Q(x),满足 F ( x ) = R ( x ) G ( x ) + Q ( x ) F(x) = R(x)G(x) + Q(x) F(x)=R(x)G(x)+Q(x)

R ( x ) R(x) R(x)是一个 n − m n - m nm阶多项式, Q ( x ) Q(x) Q(x)是一个小于 m m m阶的多项式。
有 F ( x ) ≡ R ( x ) G ( x ) + Q ( x ) ( m o d x n + 1 ) F ( 1 x ) ≡ R ( 1 x ) G ( 1 x ) + Q ( 1 x ) ( m o d x n + 1 ) 同 时 乘 上 一 个 x n , F r e v ( x ) ≡ ( x m R r e v ( x ) ) ( x n − m G r e v ( x ) ) + x n − d e g Q Q r e v ( x ) ( m o d x n + 1 ) F r e v ( x ) ≡ R r e v ( x ) G r e v ( x ) + Q r e v ( x ) x n − d e g Q ( m o d x n + 1 ) 有 d e g Q < m , n − d e g Q > = n − m + 1 , 所 以 有 F r e v ( x ) ≡ R r e v ( x ) G r e v ( x ) ( m o d x n − m + 1 ) 有F(x) \equiv R(x) G(x) + Q(x) \pmod{x ^ {n + 1}}\\ F(\frac{1}{x}) \equiv R(\frac{1}{x})G(\frac{1}{x}) + Q(\frac{1}{x}) \pmod {x ^{n + 1}}\\ 同时乘上一个x ^ n, F^{rev}(x) \equiv \left(x ^m R ^{rev}(x)\right) \left(x ^{n - m}G ^{rev}(x)\right) + x ^{n - deg_Q} Q ^{rev} (x) \pmod{x ^{n + 1}} \\ F^{rev}(x) \equiv R^{rev}(x) G^{rev}(x) + Q^{rev}(x) x ^{n - deg_Q}\pmod{x ^{n + 1}}\\ 有deg_Q < m, n - deg_Q >= n - m + 1,所以有F^{rev}(x) \equiv R^{rev}(x) G^{rev}(x) \pmod{x ^{n - m + 1}}\\ F(x)R(x)G(x)+Q(x)(modxn+1)F(x1)R(x1)G(x1)+Q(x1)(modxn+1)xn,Frev(x)(xmRrev(x))(xnmGrev(x))+xndegQQrev(x)(modxn+1)Frev(x)Rrev(x)Grev(x)+Qrev(x)xndegQ(modxn+1)degQ<m,ndegQ>=nm+1,Frev(x)Rrev(x)Grev(x)(modxnm+1)
只要多项式求逆,即可得到 R ( x ) R(x) R(x),然后代入原式求得 Q ( x ) Q(x) Q(x)

#include <bits/stdc++.h>

using namespace std;

const int mod = 998244353, inv2 = mod + 1 >> 1;

namespace Quadratic_residue {
  struct Complex {
    int r, i;

    Complex(int _r = 0, int _i = 0) : r(_r), i(_i) {}
  };

  int I2;

  Complex operator * (const Complex &a, Complex &b) {
    return Complex((1ll * a.r * b.r % mod  + 1ll * a.i * b.i % mod * I2 % mod) % mod, (1ll * a.r * b.i % mod + 1ll * a.i * b.r % mod) % mod);
  }

  Complex quick_pow(Complex a, int n) {
    Complex ans = Complex(1, 0);
    while (n) {
      if (n & 1) {
        ans = ans * a;
      }
      a = a * a;
      n >>= 1;
    }
    return ans;
  }

  int get_residue(int n) {
    mt19937 e(233);
    if (n == 0) {
      return 0;
    }
    if(quick_pow(n, (mod - 1) >> 1).r == mod - 1) {
      return -1;
    }
    uniform_int_distribution<int> r(0, mod - 1);
    int a = r(e);
    while(quick_pow((1ll * a * a % mod - n + mod) % mod, (mod - 1) >> 1).r == 1) {
      a = r(e);
    }
    I2 = (1ll * a * a % mod - n + mod) % mod;
    int x = quick_pow(Complex(a, 1), (mod + 1) >> 1).r, y = mod - x;
    if(x > y) swap(x, y);
    return x;
  }
}

const int N = 6e5 + 10;

int r[N], inv[N], b[N], c[N], d[N], e[N], t[N];

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * a * ans % mod;
    }
    a = 1ll * a * a % mod;
    n >>= 1;
  }
  return ans;
}

void get_r(int lim) {
  for (int i = 0; i < lim; i++) {
    r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
  }
}

void get_inv(int n) {
  inv[1] = 1;
  for (int i = 2; i <= n; i++) {
    inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
  }
}

void NTT(int *f, int lim, int rev) {
  for (int i = 0; i < lim; i++) {
    if (i < r[i]) {
      swap(f[i], f[r[i]]);
    }
  }
  for (int mid = 1; mid < lim; mid <<= 1) {
    int wn = quick_pow(3, (mod - 1) / (mid << 1));
    for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
      int w = 1;
      for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {
        int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;
        f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;
      }
    }
  }
  if (rev == -1) {
    int inv = quick_pow(lim, mod - 2);
    reverse(f + 1, f + lim);
    for (int i = 0; i < lim; i++) {
      f[i] = 1ll * f[i] * inv % mod;
    }
  }
}

void polyinv(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = quick_pow(f[0], mod - 2);
    return ;
  }
  polyinv(f, g, n + 1 >> 1);
  for (int i = 0; i < n; i++) {
    t[i] = f[i];
  }
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(t, lim, 1);
  NTT(g, lim, 1);
  for (int i = 0; i < lim; i++) {
    int cur = (2 - 1ll * g[i] * t[i] % mod + mod) % mod;
    g[i] = 1ll * g[i] * cur % mod;
    t[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

void polysqrt(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = Quadratic_residue::get_residue(f[0]);
    return ;
  }
  polysqrt(f, g, n + 1 >> 1);
  polyinv(g, b, n);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  for (int i = 0; i < n; i++) {
    t[i] = f[i];
  }
  NTT(g, lim, 1);
  NTT(b, lim, 1);
  NTT(t, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = (1ll * inv2 * g[i] % mod + 1ll * inv2 * b[i] % mod * t[i] % mod) % mod;
    b[i] = t[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

void derivative(int *a, int *b, int n) {
  for (int i = 0; i < n; i++) {
    b[i] = 1ll * a[i + 1] * (i + 1) % mod;
  }
}

void integrate(int *a, int n) {
  for (int i = n - 1; i >= 1; i--) {
    a[i] = 1ll * a[i - 1] * inv[i] % mod;
  }
  a[0] = 0;
}

void polyln(int *f, int *g, int n) {
  polyinv(f, b, n);
  derivative(f, g, n);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(g, lim, 1);
  NTT(b, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = 1ll * g[i] * b[i] % mod;
    b[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
  integrate(g, n);
}

void polyexp(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = 1;
    return ;
  }
  polyexp(f, g, n + 1 >> 1);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  polyln(g, d, n);
  for (int i = 0; i < n; i++) {
    t[i] = (f[i] - d[i] + mod) % mod;
  }
  t[0] = (t[0] + 1) % mod;
  get_r(lim);
  NTT(g, lim, 1);
  NTT(t, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = 1ll * g[i] * t[i] % mod;
    t[i] = d[i] =  0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

/*
  b存放多项式逆,
  c存放多项式开根,
  d存放多项式对数ln,
  e存放多项式指数exp,
  t作为中间转移数组,
  如果要用到polyinv,得提前调用get_inv(n)先预先得到我们想要得到的逆元范围。
*/

int f[N], fr[N], g[N], gr[N], rr[N], n, m;

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  scanf("%d %d", &n, &m);
  for (int i = 0; i <= n; i++) {
    scanf("%d", &f[i]);
    fr[n - i] = f[i];
  }
  for (int i = 0; i <= m; i++) {
    scanf("%d", &g[i]);
    gr[m - i] = g[i];
  }
  for (int i = n - m + 1; i <= n; i++) {
    fr[i] = gr[i] = 0;
  }
  polyinv(gr, b, n - m + 1);
  for (int i = 0; i < n - m + 1; i++) {
    gr[i] = b[i];
    b[i] = 0;
  }
  int lim = 1;
  while (lim < 2 * (n - m + 1)) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(fr, lim, 1);
  NTT(gr, lim, 1);
  for (int i = 0; i < lim; i++) {
    fr[i] = 1ll * fr[i] * gr[i] % mod;
  }
  NTT(fr, lim, -1);
  for (int i = 0; i <= n - m; i++) {
    rr[i] = fr[n - m - i];
  }
  for (int i = 0; rr[i]; i++) {
    printf("%d ", rr[i]);
  }
  puts("");
  lim = 1;
  while (lim <= 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(rr, lim, 1);
  NTT(g, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = 1ll * g[i] * rr[i] % mod;
  }
  NTT(g, lim, -1);
  for (int i = 0; i < m; i++) {
    f[i] = (f[i] - g[i] + mod) % mod;
  }
  for (int i = 0; i < m; i++) {
    printf("%d ", f[i]);
  }
  puts("");
  return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值