归并排序
算法思想:
-
先把数组从中间分成两部分,每个部分再继续划分直至最小粒度。
-
从最小粒度开始自下而上对数据进行排序。
算法实现:
需要用到一个临时数组tmp
public class Main {
public static void main(String[] args) {
int[] arr = {11,44,23,67,88,65,34,48,9,12};
int[] tmp = new int[arr.length]; //新建一个临时数组存放
mergeSort(arr,0,arr.length-1,tmp);
for(int i=0;i<arr.length;i++){
System.out.print(arr[i]+" ");
}
}
public static void merge(int[] arr,int low,int mid,int high,int[] tmp){
int i = 0;
int j = low,k = mid+1; //左边序列和右边序列起始索引
while(j <= mid && k <= high){
if(arr[j] < arr[k]){
tmp[i++] = arr[j++];
}else{
tmp[i++] = arr[k++];
}
}
//若左边序列还有剩余,则将其全部拷贝进tmp[]中
while(j <= mid){
tmp[i++] = arr[j++];
}
while(k <= high){
tmp[i++] = arr[k++];
}
for(int t=0;t<i;t++){
arr[low+t] = tmp[t];
}
}
public static void mergeSort(int[] arr,int low,int high,int[] tmp){
if(low<high){
int mid = (low+high)/2;
mergeSort(arr,low,mid,tmp); //对左边序列进行归并排序
mergeSort(arr,mid+1,high,tmp); //对右边序列进行归并排序
merge(arr,low,mid,high,tmp); //合并两个有序序列
}
}
}
算法分析:
时间复杂度:
-
对 n 个元素进行归并排序所需要的时间是T(n),那分解成两个子数组排序的时间都是 T(\frac{n}{2}),而合并两个子数组的时间复杂度为O(n)。
-
计算公式:C表示常量级的运行时间
$$
T(1) = C T(n) = 2 * T(\frac{n}{2}) + n = 2*[2*T(\frac{n}{4}) + \frac{n}{2}] + n = 4 * T(\frac{n}{4}) + 2n = ...
$$ -
可以求得T(n) = n*C + n\log_{2}(n)
-
因此时间复杂度为O(nlogn)
-
时间复杂度很稳定
空间复杂度:
-
不是原地排序算法,需要借助于临时数组
-
O(n)
快速排序
算法思想:
-
选择一个参考节点pivot
-
将小于pivot的元素放在pivot左边;大于pivot的元素放在pivot右边
-
对pivot左右两区间元素分别重复上述步骤,直到区间缩小为1
-
快排是自上而下的
-
算法实现:
public class QuickSort {
public static void quickSort(int[] arr,int low,int high){
int i,j,temp,t;
if(low>high){
return;
}
i=low;
j=high;
//temp就是基准位
temp = arr[low];
while (i<j) {
//先看右边,依次往左递减
while (temp<=arr[j]&&i<j) {
j--;
}
//再看左边,依次往右递增
while (temp>=arr[i]&&i<j) {
i++;
}
//如果满足条件则交换
if (i<j) {
t = arr[j];
arr[j] = arr[i];
arr[i] = t;
}
}
//最后将基准为与i和j相等位置的数字交换
arr[low] = arr[i];
arr[i] = temp;
//递归调用左半数组
quickSort(arr, low, j-1);
//递归调用右半数组
quickSort(arr, j+1, high);
}
public static void main(String[] args){
int[] arr = {10,7,2,4,7,62,3,4,2,1,8,9,19};
quickSort(arr, 0, arr.length-1);
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
}
}
算法分析:
时间复杂度:
-
时间复杂度不稳定,pivot的取值会影响其时间复杂度
-
若每次排序都能够将数据分成相等的两部分,则时间复杂度也为O(nlogn)
-
但是事实上每次分出来的两部分不均等。若每一次找到的pivot都在待排序区间的边界上,则需要进行n次分区才能完成排序。此时的时间复杂度为O(n^2)
空间复杂度:
-
是原地算法。常数量的空间复杂度,O(1)
算法优化:如何避免时间复杂度退化为O(n^2)
-
随机选择pivot,即避免直接选择第一位或最后一位元素为pivot
-
在排序前先shuffle一下数组
归并 vs 快排
相同点:
-
均采用分治的思想。
分治:即将大问题拆分成许多小问题,对小问题逐一解决。
分治多用递归思想来实现算法
不同点:
-
归并:自下而上排序;快排:自上而下排序;
-
时间复杂度:
-
归并:复杂度稳定,为O(nlogn)
-
快排:不稳定,最优为O(nlogn),最坏为O(n^2)
-
-
空间复杂度:
-
归并:非原地算法,借助于临时数组,为O(n)
-
快排:原地算法,可认为为常数量的复杂度
-
参考:
排序算法之——归并排序和快速排序 - 知乎 (zhihu.com)