归并排序 vs 快速排序 含Java算法实现

本文详细介绍了归并排序和快速排序的算法思想、实现过程、时间复杂度(归并排序为O(nlogn),快速排序最差为O(n^2)),以及它们的相同点(分治思想)和不同点(归并自下而上、稳定,快速自上而下、不稳定,归并非原地O(n),快速原地O(1))。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

归并排序

算法思想:

  1. 先把数组从中间分成两部分,每个部分再继续划分直至最小粒度。

  2. 从最小粒度开始自下而上对数据进行排序。

算法实现:

需要用到一个临时数组tmp

public class Main {
 
    public static void main(String[] args) {
        int[] arr = {11,44,23,67,88,65,34,48,9,12};
        int[] tmp = new int[arr.length];    //新建一个临时数组存放
        mergeSort(arr,0,arr.length-1,tmp);
        for(int i=0;i<arr.length;i++){
            System.out.print(arr[i]+" ");
        }
    }
    
    public static void merge(int[] arr,int low,int mid,int high,int[] tmp){
        int i = 0;
        int j = low,k = mid+1;  //左边序列和右边序列起始索引
        while(j <= mid && k <= high){
            if(arr[j] < arr[k]){
                tmp[i++] = arr[j++];
            }else{
                tmp[i++] = arr[k++];
            }
        }
        //若左边序列还有剩余,则将其全部拷贝进tmp[]中
        while(j <= mid){    
            tmp[i++] = arr[j++];
        }
        
        while(k <= high){
            tmp[i++] = arr[k++];
        }
        
        for(int t=0;t<i;t++){
            arr[low+t] = tmp[t];
        }
    }
 
    public static void mergeSort(int[] arr,int low,int high,int[] tmp){
        if(low<high){
            int mid = (low+high)/2;
            mergeSort(arr,low,mid,tmp); //对左边序列进行归并排序
            mergeSort(arr,mid+1,high,tmp);  //对右边序列进行归并排序
            merge(arr,low,mid,high,tmp);    //合并两个有序序列
        }
    }
    
}

算法分析:

时间复杂度:

  • 对 n 个元素进行归并排序所需要的时间是T(n),那分解成两个子数组排序的时间都是 T(\frac{n}{2}),而合并两个子数组的时间复杂度为O(n)。

  • 计算公式:C表示常量级的运行时间

    $$
    T(1) = C T(n) = 2 * T(\frac{n}{2}) + n = 2*[2*T(\frac{n}{4}) + \frac{n}{2}] + n = 4 * T(\frac{n}{4}) + 2n = ...
    $$

  • 可以求得T(n) = n*C + n\log_{2}(n)

  • 因此时间复杂度为O(nlogn)

  • 时间复杂度很稳定

空间复杂度:

  • 不是原地排序算法,需要借助于临时数组

  • O(n)

快速排序

算法思想:

  • 选择一个参考节点pivot

  • 将小于pivot的元素放在pivot左边;大于pivot的元素放在pivot右边

  • 对pivot左右两区间元素分别重复上述步骤,直到区间缩小为1

  • 快排是自上而下的

算法实现:

public class QuickSort {
    public static void quickSort(int[] arr,int low,int high){
        int i,j,temp,t;
        if(low>high){
            return;
        }
        i=low;
        j=high;
        //temp就是基准位
        temp = arr[low];
 
        while (i<j) {
            //先看右边,依次往左递减
            while (temp<=arr[j]&&i<j) {
                j--;
            }
            //再看左边,依次往右递增
            while (temp>=arr[i]&&i<j) {
                i++;
            }
            //如果满足条件则交换
            if (i<j) {
                t = arr[j];
                arr[j] = arr[i];
                arr[i] = t;
            }
 
        }
        //最后将基准为与i和j相等位置的数字交换
         arr[low] = arr[i];
         arr[i] = temp;
        //递归调用左半数组
        quickSort(arr, low, j-1);
        //递归调用右半数组
        quickSort(arr, j+1, high);
    }
 
 
    public static void main(String[] args){
        int[] arr = {10,7,2,4,7,62,3,4,2,1,8,9,19};
        quickSort(arr, 0, arr.length-1);
        for (int i = 0; i < arr.length; i++) {
            System.out.println(arr[i]);
        }
    }
}

算法分析:

时间复杂度:

  • 时间复杂度不稳定,pivot的取值会影响其时间复杂度

  • 若每次排序都能够将数据分成相等的两部分,则时间复杂度也为O(nlogn)

  • 但是事实上每次分出来的两部分不均等。若每一次找到的pivot都在待排序区间的边界上,则需要进行n次分区才能完成排序。此时的时间复杂度为O(n^2)

空间复杂度:

  • 是原地算法。常数量的空间复杂度,O(1)

算法优化:如何避免时间复杂度退化为O(n^2)

  1. 随机选择pivot,即避免直接选择第一位或最后一位元素为pivot

  2. 在排序前先shuffle一下数组

归并 vs 快排

相同点:

  1. 均采用分治的思想。

    分治:即将大问题拆分成许多小问题,对小问题逐一解决。

    分治多用递归思想来实现算法

不同点:

  1. 归并:自下而上排序;快排:自上而下排序;

  2. 时间复杂度:

    • 归并:复杂度稳定,为O(nlogn)

    • 快排:不稳定,最优为O(nlogn),最坏为O(n^2)

  3. 空间复杂度:

    • 归并:非原地算法,借助于临时数组,为O(n)

    • 快排:原地算法,可认为为常数量的复杂度

参考:

排序算法之——归并排序和快速排序 - 知乎 (zhihu.com)

归并排序(Java代码实现)_归并排序 java-CSDN博客

快速排序(java实现)_java快速排序-CSDN博客

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值