克里金插值(Kriging)在MATLAB中的实现【优化】

文章介绍了如何在MATLAB中使用克里金插值工具箱进行数据插值,特别是DACE模型的运用,涉及dacefit函数的参数设置和模型优化。通过示例代码展示了数据加载、模型拟合、预测网格生成及误差分析的过程,强调了相关函数参数调整对模型性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该部分是基于克里金插值(Kriging)在MATLAB中的实现(克里金工具箱),由于在运行过程中有部分问题,基于此做的一些理解+优化

工具箱的下载见上面的链接,其提供了工具箱。

clc
clear

load('data_kriging.mat')  %载入数据;我在这里将工具箱中的data1替换了名字

%模型参数设置,无特殊情况不需修改,见说明书
theta = [10 10]; lob = [1e-1 1e-1]; upb = [20 20];

[dmodel, perf] = dacefit(S, Y, @regpoly0, @corrgauss, theta, lob, upb);
% corrgauss表示高斯相关函数
% lob:相关函数参数的下界向量
% upb:相关函数参数的上界向量

%S存储了点位坐标值,Y为观测值
X = gridsamp([0 0;100 100], 40);  %创建一个40*40的格网,标注范围为0-100,即格网间距为2.5

% X=[83.731	32.36];     %单点预测的实现
%格网点的预测值返回在矩阵YX中,预测点的均方根误差返回在矩阵MSE中
[YX,MSE] = predictor(X, dmodel);    
X1 = reshape(X(:,1),40,40); X2 = reshape(X(:,2),40,40);
YX = reshape(YX, size(X1));         %size(X1)=40*40

figure(1), mesh(X1, X2, YX)         %绘制预测表面
hold on,
plot3(S(:,1),S(:,2),Y,'.k', 'MarkerSize',10)    %绘制原始散点数据
hold off

figure(2),mesh(X1, X2, reshape(MSE,size(X1)));  %绘制每个点的插值误差大小

在dacefit函数中,参数的含义如下:

  • S:输入变量的样本数据矩阵,每一行代表一个样本点,每一列代表一个输入变量。
  • Y:响应变量的样本数据矩阵,每一行代表一个样本点,每一列代表一个响应变量。
  • @regpoly0:回归多项式函数的句柄,用于拟合输入变量和响应变量之间的回归关系。regpoly0表示零阶多项式,即常数回归模型。
  • @corrgauss:相关函数的句柄,用于描述输入变量之间的相关性。corrgauss表示高斯相关函数。
  • theta:相关函数的参数向量,用于调整相关函数的形状和范围。具体含义根据相关函数的定义而定。
  • lob:相关函数参数的下界向量,用于限制参数的范围。
  • upb:相关函数参数的上界向量,用于限制参数的范围。

函数返回值包括:

  • dmodel:拟合好的DACE模型,可以用于进行预测和插值。
  • perf:拟合模型的性能指标,如均方根误差(RMSE)、均方误差(MSE)等。

通过调整相关函数的参数和范围,可以对DACE模型进行优化,以最好地拟合输入变量和响应变量之间的关系。

在这里插入图片描述

在这里插入图片描述

备注:如果缺失数据不是规整的,这种方法还是比较难应用。
相关的原理可借鉴:
克里金插值MATLAB程序

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

早起CaiCai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值