基于Python的信用评分卡模型分析

发现一个基于Python构建信用评分卡模型的小项目,步骤非常清晰。这里分享给大家做个参考。

  • 基于Python的信用评分卡模型分析(一)
    一、项目流程
    二、数据获取
    三、数据预处理
    3.1 缺失值处理
    3.2 异常值处理
    3.3 数据切分
    四、探索性分析
    五、变量选择
    5.1 分箱处理
    5.2 WOE
    5.3 相关性分析和IV筛选

如果不理解woe和IV,请看这篇,介绍的非常通俗易懂。数据挖掘模型中的IV和WOE详解

  • 基于Python的信用评分卡模型分析(二)
    六、模型分析
    6.1 WOE转换
    6.2 Logisic模型建立
    6.3 模型检验
    七、信用评分
    7.1 评分标准
    7.2 部分评分
    八、自动评分系统
    九、总结以及展望

  • 参考资料
    1、基于Python的信用评分卡模型分析–简书作者YoLean
    2、数据挖掘模型中的IV和WOE详解–csdn作者kevin7561

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值