提示:本文详细介绍了遗传算法和NSGA-II算法。使用NSGA-II算法对一个多目标算例进行求解,并在求解过程中引入了约束条件。本文源码可直接运行使用。
文章目录
前言
本文介绍了使用C语言实现NSGA-II算法,堆算法进行详细解释并附带约束条件。
一、遗传算法流程及详解
遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学原理的优化算法,广泛应用于求解复杂的优化问题。遗传算法的基本流程如下:
-
初始化种群(Initialization)
随机生成一个种群,种群中的每个个体代表一个可能的解。每个个体由一串基因(如二进制、实数或其他编码方式)组成,这些基因组成了该个体的解。种群的大小通常是事先设定好的。 -
适应度评估(Fitness Evaluation)
对种群中的每个个体进行评估,计算适应度函数值。适应度函数用来衡量个体解的优劣,一般是目标函数的值或其某种形式的转化。
高适应度的个体代表较优的解,低适应度的个体代表较差的解。 -
选择操作(Selection)
基于适应度值,选择一部分个体作为父代,准备进行交叉和变异操作。常见的选择方式如下。
轮盘赌选择:根据适应度的相对值来选择个体,适应度越高的个体被选择的概率越大。
锦标赛选择:从种群中随机选出若干个体进行竞争,选择适应度最好的个体作为父代。
排名选择:根据个体的适应度排序,选择适应度较好的个体。 -
交叉操作(Crossover)
交叉操作是遗传算法中的核心操作之一,通过将两个父代个体的基因交换,生成新的子代个体。
常见的交叉方式有:
单点交叉:选择一个随机位置,交换父代个体在该位置之后的基因。
两点交叉:选择两个随机位置,交换父代个体在这两个位置之间的基因。
均匀交叉:随机选择父代基因中的各个位置,决定将其从父代1还是父代2中继承。 -
变异操作(Mutation)
变异操作是指以一定的概率对个体基因进行随机改变。这是引入基因多样性的一种方式,防止算法陷入局部最优解。
常见的变异方式有:
位变异:在二进制编码中,随机选择一个基因位置,翻转其值。
交换变异:在实数编码中,随机交换两个基因的值。
变异概率一般较低,以保持种群的稳定性。 -
适应度评估(再次评估)
对通过交叉和变异生成的子代进行适应度评估,判断其优劣。 -
替代操作(Replacement)
将父代和子代的个体进行竞争,选择适应度较高的个体进入下一代。常见的替代方式有:
精英策略:直接保留最优秀的个体进入下一代,确保解的质量不下降。
代际替换:父代和子代完全交换,种群由子代组成。
部分替换:根据适应度选择一部分父代和子代进行交换。 -
终止条件(Termination)
遗传算法的执行通常会在满足某个终止条件时停止。常见的终止条件有:
达到最大代数。
适应度不再有显著改善。
找到满足精度要求的解。
遗传算法的流程:
步骤1:初始化种群
步骤2:评估每个个体的适应度
步骤3:选择父代
步骤4:交叉生成子代
步骤5:变异子代
步骤6:评估子代的适应度
步骤7:选择替代父代
步骤8:如果满足终止条件,则终止;否则,返回第3步。
详细解析:
初始化种群:
初始化种群是遗传算法的第一步,涉及生成一个初始解的种群。这个种群可以随机生成,也可以通过某些启发式方法生成,确保其多样性和广泛的搜索空间。
适应度评估:
适应度评估是判断个体优劣的标准。对于最优化问题,通常选择目标函数值或其变种作为适应度。对于约束优化问题,可能会考虑惩罚函数来处理约束。
选择操作:
选择是遗传算法中控制种群质量的关键过程。高适应度个体有更高的概率被选中,从而能够产生更多的优秀后代。选择方法通常依据适应度差异,保证较优个体有更高的繁殖机会。
交叉操作:
交叉操作是模拟自然界中基因重组的过程。它能够通过组合父代的优点,生成新的解。不同的交叉方法适用于不同类型的编码,选择合适的交叉策略能够提高搜索效率。
变异操作:
变异操作引入了随机性,有助于避免陷入局部最优解。通过变异,算法能够探索新的解空间,从而增加全局搜索的可能性。
替代操作:
替代操作决定了种群的更新方式。精英策略保证最好的解不被丢失,而其他替代策略则在种群更新时平衡了多样性和收敛性。
终止条件:
设定合适的终止条件非常重要。过早终止可能导致算法在局部最优解附近停止,而过晚终止则可能导致计算资源的浪费。
优缺点:
优点:
可处理复杂的、多模态的优化问题。
能在没有梯度信息的情况下进行全局搜索。
自适应能力强,能处理多目标、多约束问题。
缺点:
对参数(如交叉率、变异率、种群大小等)较为敏感。
计算复杂度较高,尤其是种群和问题规模大的时候。
可能会陷入局部最优解,尽管变异操作能减缓这一问题。
遗传算法是一种灵活的优化算法,能够适应各种不同类型的优化问题。通过调整适当的参数和策略,遗传算法在许多领域(如机器学习、工程优化、路径规划等)都取得了成功的应用。
二、NSGA-II算法优势
NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种常用的多目标优化算法,广泛应用于解决具有多个目标函数的优化问题。其优势包括:
非支配排序:
NSGA-II采用非支配排序的方法,将解划分为不同的等级。每个解与其他解进行比较,若它不能被任何解支配,则被认为是非支配解,这有助于保持解的多样性。
拥挤度比较:
为了维护种群的多样性,NSGA-II使用拥挤度距离来衡量解的分布密度。通过避免解群集在一起,它有助于确保算法找到更加均匀分布的Pareto前沿。
快速非支配排序:
NSGA-II通过引入快速非支配排序算法,大大提高了排序效率,降低了计算复杂度,从而能更高效地处理大规模的多目标优化问题。
较低的计算复杂度:
与许多多目标优化算法相比,NSGA-II的时间复杂度相对较低。其非支配排序的复杂度是O(MN²),其中M是目标数,N是种群大小。
自适应的选择机制:
通过选择合适的父代解(考虑非支配等级和拥挤度),NSGA-II能够平衡探索与开发,从而促进解空间的全面搜索。
广泛应用:
NSGA-II适用于多种实际问题,如工程设计、路径规划、资源分配等,其良好的性能使其成为多目标优化领域中的经典算法。
收敛性和多样性平衡:
NSGA-II在保证解的收敛性的同时,也能维持解的多样性,使得在Pareto前沿上的解尽可能均匀分布。
总的来说,NSGA-II具有较高的计算效率、良好的收敛性和多样性维护能力,广泛适用于实际的多目标优化问题。
三、NSGA-II算法流程及详解
1.NSGA-II算法流程
NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种经典的多目标优化算法,用于解决多目标优化问题。下面是对NSGA-II算法的流程:
步骤1:初始化种群: 随机生成初始种群,包含一定数量的个体。
步骤2:计算适应度值: 对每个个体,计算其目标函数值或优化指标值,并评估其适应度。在NSGA-II中,适应度值是根据个体在目标函数空间中的非支配排序确定的。
步骤3:快速非支配排序: 将种群中的个体按照其在目标函数空间中的非支配关系进行排序。一个个体被称为非支配的,如果没有其他个体能够在所有目标函数上同时取得更好的结果。
步骤4:计算拥挤度: 对于每个等级的个体,计算其在目标函数空间中的拥挤度。拥挤度度量了个体周围的密度,用于保持多样性。
步骤5:生成子代: 使用交叉和变异操作,根据选择策略从当前种群中选择父代个体,并产生相应数量的子代个体。
步骤6:合并父代和子代: 将父代个体和子代个体合并成一个新的种群。
**步骤7:重复步骤3到步骤6:**反复迭代执行步骤3到步骤6,直到达到预定的停止条件,例如达到最大迭代次数或达到收敛条件。
步骤8:选择下一代种群: 根据非支配排序和拥挤度来选择下一代种群。首先按照非支配排序将个体分为不同的等级,然后按照拥挤度进行选择,以保留高等级的个体和具有较高拥挤度的个体。
重复步骤3到步骤8: 继续重复步骤3到步骤8,直到满足停止条件。
NSGA-II算法通过非支配排序和拥挤度来维护种群的多样性,并寻找出种群中的非支配解集合,这些解集合构成了帕累托前沿(Pareto Front),表示了在多个目标函数下的最优解集合。NSGA-II算法具有较好的收敛性和多样性,并已被广泛应用于多目标优化问题的求解。
2.快速非支配排序
这是一个简单的二目标优化问题,其中第一个目标函数f1是个体距离原点的平方和,而第二个目标函数f2 是个体距离点 (2,2)(2,2) 的平方和。两个目标函数之间没有明显的相关性,因此可以使用多目标优化算法来求解这个问题。
代码中的约束条件是:0≤x≤4,0≤y≤4
约束条件限制了自变量 x和 y的取值范围在 [0, 4] 之间。这意味着个体的解必须满足这两个约束条件才能被认为是可行解。如果个体不满足约束条件,会应用惩罚因子来修正目标函数值,以便在优化过程中更好地考虑约束条件。
3.计算拥挤度
addr.can_family = AF_CAN;
addr.can_ifindex = ifr.ifr_ifindex;
if (bind(s, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
perror("SocketCAN bind");
return 1;
}
sockaddr_can 是一个结构体类型,bind函数将绑定CAN套接字到指定的CAN接口。返回值>0。
4.种群选择
// 发送CAN数据帧
frame.can_id = 0x123; // 发送的CAN ID
frame.can_dlc = 2; // 数据长度
frame.data[0] = 0x11; // 数据字节1
frame.data[1] = 0x22; // 数据字节2
if (write(s, &frame, sizeof(struct can_frame)) != sizeof(struct can_frame)) {
perror("SocketCAN write");
return 1;
}
5.目标函数及约束条件
ssize_t nbytes = read(s, &frame, sizeof(struct can_frame));
if (nbytes < 0) {
perror("SocketCAN read");
return 1;
} else if (nbytes < sizeof(struct can_frame)) {
fprintf(stderr, "SocketCAN read: incomplete frame\n");
return 1;
}
四、NSGA-II算法示例代码
下面的代码示例是使用C语言进行的变形可直接使用。
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define POPULATION_SIZE 100 // 种群大小
#define MAX_GENERATION 100 // 最大迭代次数
#define CROSSOVER_PROB 0.8 // 交叉概率
#define MUTATION_PROB 0.1 // 变异概率
#define CONSTRAINT_PENALTY 1000 // 约束违反的惩罚因子
// 定义个体结构体
typedef struct {
double x; // 自变量x
double y; // 自变量y
double fitness1; // 目标函数1值
double fitness2; // 目标函数2值
} Individual;
// 求解目标函数1
double evaluateFunction1(double x, double y) {
return x * x + y * y;
}
// 求解目标函数2
double evaluateFunction2(double x, double y) {
return (x - 2) * (x - 2) + (y - 2) * (y - 2);
}
// 计算适应度值
void calculateFitness(Individual *individual) {
individual->fitness1 = evaluateFunction1(individual->x, individual->y);
individual->fitness2 = evaluateFunction2(individual->x, individual->y);
}
// 初始化种群
void initializePopulation(Individual population[]) {
int i;
for (i = 0; i < POPULATION_SIZE; i++) {
population[i].x = rand() / (double)RAND_MAX * 4; // x的取值范围为[0, 4]
population[i].y = rand() / (double)RAND_MAX * 4; // y的取值范围为[0, 4]
calculateFitness(&population[i]);
}
}
// 交叉操作
void crossover(Individual parent1, Individual parent2, Individual *child) {
child->x = parent1.x * CROSSOVER_PROB + parent2.x * (1 - CROSSOVER_PROB);
child->y = parent1.y * CROSSOVER_PROB + parent2.y * (1 - CROSSOVER_PROB);
}
// 变异操作
void mutation(Individual *individual) {
individual->x += (rand() / (double)RAND_MAX - 0.5) * 0.2; // x的变异范围为[-0.1, 0.1]
individual->y += (rand() / (double)RAND_MAX - 0.5) * 0.2; // y的变异范围为[-0.1, 0.1]
}
// 判断是否满足约束条件
int isFeasible(Individual individual) {
if (individual.x < 0 || individual.x > 4 || individual.y < 0 || individual.y > 4) {
return 0; // 不满足约束条件
}
return 1; // 满足约束条件
}
// 使用惩罚因子修正目标函数值
void applyPenalty(Individual *individual) {
if (!isFeasible(*individual)) {
individual->fitness1 += CONSTRAINT_PENALTY;
individual->fitness2 += CONSTRAINT_PENALTY;
}
}
// 快速非支配排序
void fastNonDominatedSort(Individual population[], int *dominanceMatrix[], int *dominationCount[], int *rank) {
int i, j, k;
int n = POPULATION_SIZE;
// 初始化支配矩阵和支配计数矩阵
for (i = 0; i < n; i++) {
dominanceMatrix[i] = malloc(n * sizeof(int));
dominationCount[i] = 0;
}
// 对每个个体,计算其被支配的个体集合和支配个体数量
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
dominanceMatrix[i][j] = 0;
if (population[i].fitness1 < population[j].fitness1 && population[i].fitness2 < population[j].fitness2) {
dominanceMatrix[i][j] = 1;
} else if (population[j].fitness1 < population[i].fitness1 && population[j].fitness2 < population[i].fitness2) {
dominationCount[i]++;
}
}
}
// 根据支配关系进行快速非支配排序
rank[0] = 0;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
if (dominationCount[j] == 0) {
population[j].rank = rank[0];
for (k = 0; k < n; k++) {
if (dominanceMatrix[j][k] == 1) {
dominationCount[k]--;
}
}
}
}
rank[0]++;
}
// 释放内存
for (i = 0; i < n; i++) {
free(dominanceMatrix[i]);
}
}
// 计算拥挤度
void calculateCrowdingDistance(Individual population[], int front[], int frontSize, double crowdingDistance[]) {
int i;
for (i = 0; i < frontSize; i++) {
crowdingDistance[i] = 0;
}
// 对每个目标函数分别计算拥挤度
for (int m = 0; m <= 1; m++) {
for (i = 0; i < frontSize; i++) {
population[front[i]].index = front[i];
}
// 对当前目标函数值进行排序
for (int j = 0; j <= 1; j++) {
for (i = 0; i < frontSize - 1; i++) {
for (int k = 0; k < frontSize - i - 1; k++) {
if ((m == 0 && population[front[k]].fitness1 > population[front[k + 1]].fitness1)
|| (m == 1 && population[front[k]].fitness2 > population[front[k + 1]].fitness2)) {
int temp = front[k];
front[k] = front[k + 1];
front[k + 1] = temp;
}
}
}
}
crowdingDistance[front[0]] = crowdingDistance[front[frontSize - 1]] = INFINITY;
// 计算拥挤度
for (i = 1; i < frontSize - 1; i++) {
crowdingDistance[front[i]] += (population[front[i + 1]].fitness1 - population[front[i - 1]].fitness1)
/ (population[front[frontSize - 1]].fitness1 - population[front[0]].fitness1);
}
}
}
// NSGA-II算法主函数
void nsga2Algorithm() {
Individual population[POPULATION_SIZE];
Individual offspring[POPULATION_SIZE];
Individual combinedPopulation[2 * POPULATION_SIZE];
int *dominanceMatrix[POPULATION_SIZE];
int *dominationCount[POPULATION_SIZE];
int rank[POPULATION_SIZE];
double crowdingDistance[POPULATION_SIZE];
// 初始化种群
initializePopulation(population);
// 进化过程
for (int generation = 1; generation <= MAX_GENERATION; generation++) {
// 生成子代
for (int i = 0; i < POPULATION_SIZE; i += 2) {
Individual parent1 = population[rand() % POPULATION_SIZE];
Individual parent2 = population[rand() % POPULATION_SIZE];
// 交叉操作
crossover(parent1, parent2, &offspring[i]);
crossover(parent2, parent1, &offspring[i + 1]);
// 变异操作
mutation(&offspring[i]);
mutation(&offspring[i + 1]);
// 计算适应度值
calculateFitness(&offspring[i]);
calculateFitness(&offspring[i + 1]);
// 应用惩罚因子
applyPenalty(&offspring[i]);
applyPenalty(&offspring[i + 1]);
}
// 合并父代和子代为新种群
for (int i = 0; i < POPULATION_SIZE; i++) {
combinedPopulation[i] = population[i];
combinedPopulation[i + POPULATION_SIZE] = offspring[i];
}
// 快速非支配排序
fastNonDominatedSort(combinedPopulation, dominanceMatrix, dominationCount, rank);
int frontSize = 0;
int currentRank = 0;
int i = 0;
while (frontSize + dominationCount[rank[currentRank]] <= POPULATION_SIZE) {
// 将当前等级的个体全部加入新种群
for (int j = 0; j < dominationCount[rank[currentRank]]; j++) {
int index = dominanceMatrix[rank[currentRank]][j];
population[i] = combinedPopulation[index];
i++;
}
frontSize += dominationCount[rank[currentRank]];
currentRank++;
}
// 计算当前等级个体的拥挤度
calculateCrowdingDistance(combinedPopulation, dominanceMatrix[rank[currentRank]], POPULATION_SIZE - frontSize, crowdingDistance);
// 根据拥挤度选择剩余个体加入新种群
for (int j = 0; j < POPULATION_SIZE - frontSize; j++) {
int maxIndex = 0;
double maxCrowdingDistance = -INFINITY;
for (int k = 0; k < POPULATION_SIZE; k++) {
if (crowdingDistance[k] > maxCrowdingDistance) {
maxCrowdingDistance = crowdingDistance[k];
maxIndex = k;
}
}
population[i] = combinedPopulation[maxIndex];
crowdingDistance[maxIndex] = -INFINITY;
i++;
}
}
}
int main() {
// 设置随机种子
srand(time(NULL));
// 执行NSGA-II算法
nsga2Algorithm();
return 0;
}
总结
本文详细介绍了遗传算法和NSGA-II算法。使用NSGA-II算法对一个多目标算例进行求解,并在求解过程中引入了约束条件。本文源码可直接运行使用。