NSGA-II算法详解并附带约束条件

提示:本文详细介绍了遗传算法和NSGA-II算法。使用NSGA-II算法对一个多目标算例进行求解,并在求解过程中引入了约束条件。本文源码可直接运行使用。


前言

本文介绍了使用C语言实现NSGA-II算法,堆算法进行详细解释并附带约束条件。


一、遗传算法流程及详解

遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学原理的优化算法,广泛应用于求解复杂的优化问题。遗传算法的基本流程如下:

  1. 初始化种群(Initialization)
    随机生成一个种群,种群中的每个个体代表一个可能的解。每个个体由一串基因(如二进制、实数或其他编码方式)组成,这些基因组成了该个体的解。种群的大小通常是事先设定好的。

  2. 适应度评估(Fitness Evaluation)
    对种群中的每个个体进行评估,计算适应度函数值。适应度函数用来衡量个体解的优劣,一般是目标函数的值或其某种形式的转化。
    高适应度的个体代表较优的解,低适应度的个体代表较差的解。

  3. 选择操作(Selection)
    基于适应度值,选择一部分个体作为父代,准备进行交叉和变异操作。常见的选择方式如下。
    轮盘赌选择:根据适应度的相对值来选择个体,适应度越高的个体被选择的概率越大。
    锦标赛选择:从种群中随机选出若干个体进行竞争,选择适应度最好的个体作为父代。
    排名选择:根据个体的适应度排序,选择适应度较好的个体。

  4. 交叉操作(Crossover)
    交叉操作是遗传算法中的核心操作之一,通过将两个父代个体的基因交换,生成新的子代个体。
    常见的交叉方式有:
    单点交叉:选择一个随机位置,交换父代个体在该位置之后的基因。
    两点交叉:选择两个随机位置,交换父代个体在这两个位置之间的基因。
    均匀交叉:随机选择父代基因中的各个位置,决定将其从父代1还是父代2中继承。

  5. 变异操作(Mutation)
    变异操作是指以一定的概率对个体基因进行随机改变。这是引入基因多样性的一种方式,防止算法陷入局部最优解。
    常见的变异方式有:
    位变异:在二进制编码中,随机选择一个基因位置,翻转其值。
    交换变异:在实数编码中,随机交换两个基因的值。
    变异概率一般较低,以保持种群的稳定性。

  6. 适应度评估(再次评估)
    对通过交叉和变异生成的子代进行适应度评估,判断其优劣。

  7. 替代操作(Replacement)
    将父代和子代的个体进行竞争,选择适应度较高的个体进入下一代。常见的替代方式有:
    精英策略:直接保留最优秀的个体进入下一代,确保解的质量不下降。
    代际替换:父代和子代完全交换,种群由子代组成。
    部分替换:根据适应度选择一部分父代和子代进行交换。

  8. 终止条件(Termination)
    遗传算法的执行通常会在满足某个终止条件时停止。常见的终止条件有:
    达到最大代数。
    适应度不再有显著改善。
    找到满足精度要求的解。

遗传算法的流程:
步骤1:初始化种群
步骤2:评估每个个体的适应度
步骤3:选择父代
步骤4:交叉生成子代
步骤5:变异子代
步骤6:评估子代的适应度
步骤7:选择替代父代
步骤8:如果满足终止条件,则终止;否则,返回第3步。

详细解析:

初始化种群:
初始化种群是遗传算法的第一步,涉及生成一个初始解的种群。这个种群可以随机生成,也可以通过某些启发式方法生成,确保其多样性和广泛的搜索空间。
适应度评估:
适应度评估是判断个体优劣的标准。对于最优化问题,通常选择目标函数值或其变种作为适应度。对于约束优化问题,可能会考虑惩罚函数来处理约束。
选择操作:
选择是遗传算法中控制种群质量的关键过程。高适应度个体有更高的概率被选中,从而能够产生更多的优秀后代。选择方法通常依据适应度差异,保证较优个体有更高的繁殖机会。
交叉操作
交叉操作是模拟自然界中基因重组的过程。它能够通过组合父代的优点,生成新的解。不同的交叉方法适用于不同类型的编码,选择合适的交叉策略能够提高搜索效率。
变异操作:
变异操作引入了随机性,有助于避免陷入局部最优解。通过变异,算法能够探索新的解空间,从而增加全局搜索的可能性。
替代操作:
替代操作决定了种群的更新方式。精英策略保证最好的解不被丢失,而其他替代策略则在种群更新时平衡了多样性和收敛性。
终止条件:
设定合适的终止条件非常重要。过早终止可能导致算法在局部最优解附近停止,而过晚终止则可能导致计算资源的浪费。

优缺点:
优点
可处理复杂的、多模态的优化问题。
能在没有梯度信息的情况下进行全局搜索。
自适应能力强,能处理多目标、多约束问题。
缺点:
对参数(如交叉率、变异率、种群大小等)较为敏感。
计算复杂度较高,尤其是种群和问题规模大的时候。
可能会陷入局部最优解,尽管变异操作能减缓这一问题。
遗传算法是一种灵活的优化算法,能够适应各种不同类型的优化问题。通过调整适当的参数和策略,遗传算法在许多领域(如机器学习、工程优化、路径规划等)都取得了成功的应用。

二、NSGA-II算法优势

NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种常用的多目标优化算法,广泛应用于解决具有多个目标函数的优化问题。其优势包括:

非支配排序
NSGA-II采用非支配排序的方法,将解划分为不同的等级。每个解与其他解进行比较,若它不能被任何解支配,则被认为是非支配解,这有助于保持解的多样性。

拥挤度比较:
为了维护种群的多样性,NSGA-II使用拥挤度距离来衡量解的分布密度。通过避免解群集在一起,它有助于确保算法找到更加均匀分布的Pareto前沿。

快速非支配排序:
NSGA-II通过引入快速非支配排序算法,大大提高了排序效率,降低了计算复杂度,从而能更高效地处理大规模的多目标优化问题。

较低的计算复杂度:
与许多多目标优化算法相比,NSGA-II的时间复杂度相对较低。其非支配排序的复杂度是O(MN²),其中M是目标数,N是种群大小。

自适应的选择机制:
通过选择合适的父代解(考虑非支配等级和拥挤度),NSGA-II能够平衡探索与开发,从而促进解空间的全面搜索。

广泛应用:
NSGA-II适用于多种实际问题,如工程设计、路径规划、资源分配等,其良好的性能使其成为多目标优化领域中的经典算法。

收敛性和多样性平衡:
NSGA-II在保证解的收敛性的同时,也能维持解的多样性,使得在Pareto前沿上的解尽可能均匀分布。

总的来说,NSGA-II具有较高的计算效率、良好的收敛性和多样性维护能力,广泛适用于实际的多目标优化问题。

三、NSGA-II算法流程及详解

1.NSGA-II算法流程

NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种经典的多目标优化算法,用于解决多目标优化问题。下面是对NSGA-II算法的流程:

步骤1:初始化种群: 随机生成初始种群,包含一定数量的个体。

步骤2:计算适应度值: 对每个个体,计算其目标函数值或优化指标值,并评估其适应度。在NSGA-II中,适应度值是根据个体在目标函数空间中的非支配排序确定的。

步骤3:快速非支配排序: 将种群中的个体按照其在目标函数空间中的非支配关系进行排序。一个个体被称为非支配的,如果没有其他个体能够在所有目标函数上同时取得更好的结果。

步骤4:计算拥挤度: 对于每个等级的个体,计算其在目标函数空间中的拥挤度。拥挤度度量了个体周围的密度,用于保持多样性。

步骤5:生成子代: 使用交叉和变异操作,根据选择策略从当前种群中选择父代个体,并产生相应数量的子代个体。

步骤6:合并父代和子代: 将父代个体和子代个体合并成一个新的种群。

**步骤7:重复步骤3到步骤6:**反复迭代执行步骤3到步骤6,直到达到预定的停止条件,例如达到最大迭代次数或达到收敛条件。

步骤8:选择下一代种群: 根据非支配排序和拥挤度来选择下一代种群。首先按照非支配排序将个体分为不同的等级,然后按照拥挤度进行选择,以保留高等级的个体和具有较高拥挤度的个体。

重复步骤3到步骤8: 继续重复步骤3到步骤8,直到满足停止条件。

NSGA-II算法通过非支配排序和拥挤度来维护种群的多样性,并寻找出种群中的非支配解集合,这些解集合构成了帕累托前沿(Pareto Front),表示了在多个目标函数下的最优解集合。NSGA-II算法具有较好的收敛性和多样性,并已被广泛应用于多目标优化问题的求解。

2.快速非支配排序

这是一个简单的二目标优化问题,其中第一个目标函数f1是个体距离原点的平方和,而第二个目标函数f2 是个体距离点 (2,2)(2,2) 的平方和。两个目标函数之间没有明显的相关性,因此可以使用多目标优化算法来求解这个问题。

代码中的约束条件是:0≤x≤4,0≤y≤4
约束条件限制了自变量 x和 y的取值范围在 [0, 4] 之间。这意味着个体的解必须满足这两个约束条件才能被认为是可行解。如果个体不满足约束条件,会应用惩罚因子来修正目标函数值,以便在优化过程中更好地考虑约束条件。

3.计算拥挤度

    addr.can_family = AF_CAN;
    addr.can_ifindex = ifr.ifr_ifindex;
    if (bind(s, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
        perror("SocketCAN bind");
        return 1;
    }
    

sockaddr_can 是一个结构体类型,bind函数将绑定CAN套接字到指定的CAN接口。返回值>0。

4.种群选择

    // 发送CAN数据帧
    frame.can_id = 0x123; // 发送的CAN ID
    frame.can_dlc = 2; // 数据长度
    frame.data[0] = 0x11; // 数据字节1
    frame.data[1] = 0x22; // 数据字节2
    if (write(s, &frame, sizeof(struct can_frame)) != sizeof(struct can_frame)) {
        perror("SocketCAN write");
        return 1;
    }

5.目标函数及约束条件

    ssize_t nbytes = read(s, &frame, sizeof(struct can_frame));
    if (nbytes < 0) {
        perror("SocketCAN read");
        return 1;
    } else if (nbytes < sizeof(struct can_frame)) {
        fprintf(stderr, "SocketCAN read: incomplete frame\n");
        return 1;
    }

四、NSGA-II算法示例代码

下面的代码示例是使用C语言进行的变形可直接使用。

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define POPULATION_SIZE 100   // 种群大小
#define MAX_GENERATION 100    // 最大迭代次数
#define CROSSOVER_PROB 0.8    // 交叉概率
#define MUTATION_PROB 0.1     // 变异概率
#define CONSTRAINT_PENALTY 1000  // 约束违反的惩罚因子

// 定义个体结构体
typedef struct {
    double x;  // 自变量x
    double y;  // 自变量y
    double fitness1;  // 目标函数1值
    double fitness2;  // 目标函数2值
} Individual;

// 求解目标函数1
double evaluateFunction1(double x, double y) {
    return x * x + y * y;
}

// 求解目标函数2
double evaluateFunction2(double x, double y) {
    return (x - 2) * (x - 2) + (y - 2) * (y - 2);
}

// 计算适应度值
void calculateFitness(Individual *individual) {
    individual->fitness1 = evaluateFunction1(individual->x, individual->y);
    individual->fitness2 = evaluateFunction2(individual->x, individual->y);
}

// 初始化种群
void initializePopulation(Individual population[]) {
    int i;
    for (i = 0; i < POPULATION_SIZE; i++) {
        population[i].x = rand() / (double)RAND_MAX * 4;  // x的取值范围为[0, 4]
        population[i].y = rand() / (double)RAND_MAX * 4;  // y的取值范围为[0, 4]
        calculateFitness(&population[i]);
    }
}

// 交叉操作
void crossover(Individual parent1, Individual parent2, Individual *child) {
    child->x = parent1.x * CROSSOVER_PROB + parent2.x * (1 - CROSSOVER_PROB);
    child->y = parent1.y * CROSSOVER_PROB + parent2.y * (1 - CROSSOVER_PROB);
}

// 变异操作
void mutation(Individual *individual) {
    individual->x += (rand() / (double)RAND_MAX - 0.5) * 0.2;  // x的变异范围为[-0.1, 0.1]
    individual->y += (rand() / (double)RAND_MAX - 0.5) * 0.2;  // y的变异范围为[-0.1, 0.1]
}

// 判断是否满足约束条件
int isFeasible(Individual individual) {
    if (individual.x < 0 || individual.x > 4 || individual.y < 0 || individual.y > 4) {
        return 0;  // 不满足约束条件
    }
    return 1;  // 满足约束条件
}

// 使用惩罚因子修正目标函数值
void applyPenalty(Individual *individual) {
    if (!isFeasible(*individual)) {
        individual->fitness1 += CONSTRAINT_PENALTY;
        individual->fitness2 += CONSTRAINT_PENALTY;
    }
}

// 快速非支配排序
void fastNonDominatedSort(Individual population[], int *dominanceMatrix[], int *dominationCount[], int *rank) {
    int i, j, k;
    int n = POPULATION_SIZE;
    
    // 初始化支配矩阵和支配计数矩阵
    for (i = 0; i < n; i++) {
        dominanceMatrix[i] = malloc(n * sizeof(int));
        dominationCount[i] = 0;
    }
    
    // 对每个个体,计算其被支配的个体集合和支配个体数量
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            dominanceMatrix[i][j] = 0;
            if (population[i].fitness1 < population[j].fitness1 && population[i].fitness2 < population[j].fitness2) {
                dominanceMatrix[i][j] = 1;
            } else if (population[j].fitness1 < population[i].fitness1 && population[j].fitness2 < population[i].fitness2) {
                dominationCount[i]++;
            }
        }
    }
    
    // 根据支配关系进行快速非支配排序
    rank[0] = 0;
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            if (dominationCount[j] == 0) {
                population[j].rank = rank[0];
                for (k = 0; k < n; k++) {
                    if (dominanceMatrix[j][k] == 1) {
                        dominationCount[k]--;
                    }
                }
            }
        }
        rank[0]++;
    }
    
    // 释放内存
    for (i = 0; i < n; i++) {
        free(dominanceMatrix[i]);
    }
}

// 计算拥挤度
void calculateCrowdingDistance(Individual population[], int front[], int frontSize, double crowdingDistance[]) {
    int i;
    for (i = 0; i < frontSize; i++) {
        crowdingDistance[i] = 0;
    }
    
    // 对每个目标函数分别计算拥挤度
    for (int m = 0; m <= 1; m++) {
        for (i = 0; i < frontSize; i++) {
            population[front[i]].index = front[i];
        }
        
        // 对当前目标函数值进行排序
        for (int j = 0; j <= 1; j++) {
            for (i = 0; i < frontSize - 1; i++) {
                for (int k = 0; k < frontSize - i - 1; k++) {
                    if ((m == 0 && population[front[k]].fitness1 > population[front[k + 1]].fitness1)
                        || (m == 1 && population[front[k]].fitness2 > population[front[k + 1]].fitness2)) {
                        int temp = front[k];
                        front[k] = front[k + 1];
                        front[k + 1] = temp;
                    }
                }
            }
        }
        
        crowdingDistance[front[0]] = crowdingDistance[front[frontSize - 1]] = INFINITY;
        
        // 计算拥挤度
        for (i = 1; i < frontSize - 1; i++) {
            crowdingDistance[front[i]] += (population[front[i + 1]].fitness1 - population[front[i - 1]].fitness1)
                                          / (population[front[frontSize - 1]].fitness1 - population[front[0]].fitness1);
        }
    }
}

// NSGA-II算法主函数
void nsga2Algorithm() {
    Individual population[POPULATION_SIZE];
    Individual offspring[POPULATION_SIZE];
    Individual combinedPopulation[2 * POPULATION_SIZE];
    int *dominanceMatrix[POPULATION_SIZE];
    int *dominationCount[POPULATION_SIZE];
    int rank[POPULATION_SIZE];
    double crowdingDistance[POPULATION_SIZE];
    
    // 初始化种群
    initializePopulation(population);
    
    // 进化过程
    for (int generation = 1; generation <= MAX_GENERATION; generation++) {
        // 生成子代
        for (int i = 0; i < POPULATION_SIZE; i += 2) {
            Individual parent1 = population[rand() % POPULATION_SIZE];
            Individual parent2 = population[rand() % POPULATION_SIZE];
            
            // 交叉操作
            crossover(parent1, parent2, &offspring[i]);
            crossover(parent2, parent1, &offspring[i + 1]);
            
            // 变异操作
            mutation(&offspring[i]);
            mutation(&offspring[i + 1]);
            
            // 计算适应度值
            calculateFitness(&offspring[i]);
            calculateFitness(&offspring[i + 1]);
            
            // 应用惩罚因子
            applyPenalty(&offspring[i]);
            applyPenalty(&offspring[i + 1]);
        }
        
        // 合并父代和子代为新种群
        for (int i = 0; i < POPULATION_SIZE; i++) {
            combinedPopulation[i] = population[i];
            combinedPopulation[i + POPULATION_SIZE] = offspring[i];
        }
        
        // 快速非支配排序
        fastNonDominatedSort(combinedPopulation, dominanceMatrix, dominationCount, rank);
        
        int frontSize = 0;
        int currentRank = 0;
        int i = 0;
        
        while (frontSize + dominationCount[rank[currentRank]] <= POPULATION_SIZE) {
            // 将当前等级的个体全部加入新种群
            for (int j = 0; j < dominationCount[rank[currentRank]]; j++) {
                int index = dominanceMatrix[rank[currentRank]][j];
                population[i] = combinedPopulation[index];
                i++;
            }
            
            frontSize += dominationCount[rank[currentRank]];
            currentRank++;
        }
        
        // 计算当前等级个体的拥挤度
        calculateCrowdingDistance(combinedPopulation, dominanceMatrix[rank[currentRank]], POPULATION_SIZE - frontSize, crowdingDistance);
        
        // 根据拥挤度选择剩余个体加入新种群
        for (int j = 0; j < POPULATION_SIZE - frontSize; j++) {
            int maxIndex = 0;
            double maxCrowdingDistance = -INFINITY;
            
            for (int k = 0; k < POPULATION_SIZE; k++) {
                if (crowdingDistance[k] > maxCrowdingDistance) {
                    maxCrowdingDistance = crowdingDistance[k];
                    maxIndex = k;
                }
            }
            
            population[i] = combinedPopulation[maxIndex];
            crowdingDistance[maxIndex] = -INFINITY;
            i++;
        }
    }
}

int main() {
    // 设置随机种子
    srand(time(NULL));
    
    // 执行NSGA-II算法
    nsga2Algorithm();
    
    return 0;
}


总结

本文详细介绍了遗传算法和NSGA-II算法。使用NSGA-II算法对一个多目标算例进行求解,并在求解过程中引入了约束条件。本文源码可直接运行使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值