李沐动手学习深度学习——4.5练习

在这里插入图片描述
在这里插入图片描述

1. 在本节的估计问题中使用λ的值进行实验。绘制训练和测试精度关于λ的函数。观察到了什么?

在这里插入图片描述
修改代码运行如图所示,可以发现对于lamda值的变化而言,对于训练loss和测试loss的影响不大。但是如果λ 太大后,train和test的loss会变得很大,太小后,train的loss会低,但是test的loss会很高。

2. 使用验证集来找到最佳值λ。它真的是最优值吗?这有关系吗?

不是,因为验证集上数据与其他数据集的数据可能不同,lamda只是对于验证数据集的最优值,而不是泛化情况下的最优值。关系上,只是划分数据降低超参数之间的影响,实现事件发生的独立而已,能够提高模型泛化能力。

3. 解答

L ( w , b ) = 1 n ∑ i = 1 n 1 2 ( w T x ( i ) + b − y i ) 2 + λ 2 ∣ w ∣ δ ∑ i ∣ w i ∣ δ ∣ w i ∣ = s g n ( w i ) w ← w − η λ s g n ( w i ) −

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pengshi12138

加油加油

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值