莫比乌斯反演合集

容斥原理

给一个长度为 n n n 的未知数列 a [ . . . ] a[...] a[...]。已知任意 a [ i ] ≤ m a x a[i]\leq max a[i]max ,和一个数列 h [ i ] h[i] h[i] h [ i ] h[i] h[i] 表示数列 a [ . . . ] a[...] a[...] 中值为 i i i 的倍数的数的个数。

求:每个 i ∈ [ 1 , m a x ] i\in[1,max] i[1,max] a n s [ i ] ans[i] ans[i]。其中 a n s [ i ] ans[i] ans[i] 意为值恰好为 i i i 的数的个数。

考虑容斥原理:

(其实这就是莫反性质的证明之一。)

a n s [ 1 ] = h ( 1 ) − h ( 2 ) − h ( 3 ) − h ( 5 ) − . . . − h ( m a x ) + h ( 2 ∗ 3 ) + h ( 2 ∗ 5 ) + . . . + h ( ( m a x − 1 ) ∗ m a x ) − . . . ans[1]=h(1)-h(2)-h(3)-h(5)-...-h(max)+h(2*3)+h(2*5)+...+h((max-1)*max)-... ans[1]=h(1)h(2)h(3)h(5)...h(max)+h(23)+h(25)+...+h((max1)max)...

其中, h ( 1 ) h(1) h(1)也是全集的大小。

写得更规范一点: a n s ( 1 ) = ∑ S ( − 1 ) ∣ S ∣ h ( p ( S ) ) ans(1)=\sum_S (-1)^{|S|}h(p(S)) ans(1)=S(1)Sh(p(S))。其中 S S S 是一个质数集合,集合中每个质数都不同。 p ( S ) p(S) p(S) 是这些质数的乘积。当 S S S 为空集时(注意,这也是被允许的), h ( ∅ ) h(\empty) h() 定义为 h ( 1 ) h(1) h(1),即全集。

观察这个式子,发现, ( − 1 ) ∣ S ∣ (-1)^{|S|} (1)S 其实就是 μ ( p ( S ) ) \mu(p(S)) μ(p(S))

而当 S S S 不满足定义,即 S S S 中存在多个相同质数,此时 μ ( p ( S ) ) = 0 \mu(p(S))=0 μ(p(S))=0,不会被计入答案,那么我们就可以通过写成莫比乌斯函数,来扩展 S S S 的定义。

于是原式可以转化为 a n s ( 1 ) = ∑ i = 1 m a x μ ( i ) h ( i ) ans(1)=\sum_{i=1}^{max}\mu(i)h(i) ans(1)=i=1maxμ(i)h(i)

同样的,我们考虑 a n s ( x ) ans(x) ans(x)。我们肯定可以将所有 a [ . . . ] a[...] a[...] 都除以 x ,然后重新计一套 h [ . . . ] h[...] h[...] 。然后用同样的公式来求。但是显然这样太慢了。

其实可以直接类比: a n s ( x ) = ∑ i = 1 ⌊ m a x x ⌋ μ ( i ) h ( x i ) ans(x)=\sum_{i=1}^{\lfloor\frac{max}{x}\rfloor}\mu(i)h(xi) ans(x)=i=1xmaxμ(i)h(xi)

如果不懂怎么类比,像上面那样用容斥原理写开就行。

直接考虑莫反的用法:

对于一些函数f(n),如果很难直接求出它的值,而容易求出其 倍数和 或 约数和g(n),那么可以通过莫比乌斯反演简化运算,求得f(n)的值

f(n) 即问题中的 a n s [ i ] ans[i] ans[i],g(n) 即 h [ i ] h[i] h[i] (倍数和)。

因此,可以直接得出: h ( n ) = ∑ d : n ∣ d a n s ( d ) h(n)=\sum_{d:n|d}ans(d) h(n)=d:ndans(d)

莫反: g ( n ) = ∑ d : n ∣ d f ( d ) ↔ f ( n ) = ∑ d : n ∣ d g ( d ) μ ( d n ) g(n)=\sum_{d:n|d}f(d)\leftrightarrow f(n)=\sum_{d:n|d}g(d)\mu(\frac{d}{n}) g(n)=d:ndf(d)f(n)=d:ndg(d)μ(nd)

❗莫反从哪里来?

莫比乌斯函数的关键性质: ∑ d ∣ n μ ( d ) = { 1 n = 1 0 n ≠ 1 \sum_{d|n}\mu(d)=\begin{cases}1&n=1\\0&n\neq 1\end{cases} dnμ(d)={10n=1n=1

∑ d ∣ n μ ( d ) = ε ( n ) \sum_{d|n}\mu(d)=\varepsilon(n) dnμ(d)=ε(n), μ ∗ 1 = ε \mu*1=\varepsilon μ1=ε。( ∗ * 为迪利克雷卷积)

因此,莫比乌斯函数是常数函数1的在迪利克雷卷积中逆元。一个函数与常数函数1进行迪利克雷卷积,得到的其实就是因数和或倍数和。那么我们要用因数和或倍数和反过来求这个函数,就直接卷上常数函数1的逆元,即莫比乌斯函数即可。

cf 990 G. GCD Counting

给一棵树,每个点一个权值,对于所有 x ∈ ( 1 , 200000 ) x\in (1,200000) x(1,200000),问有多少条路径的 g c d = x gcd=x gcd=x
考虑求一个更简单的问题:对于所有 x ∈ ( 1 , 200000 ) x\in (1,200000) x(1,200000),问有多少条路经的 g c d gcd gcd x x x 的倍数。
我们可以把原树分成200000张图。每张图都是原树拆掉特定点形成的。第 i i i 张图中的点存在当且仅当这个点的值是 i i i 的倍数,那么这棵树中的路径数就是对于这个 i i i 我们要求的答案。路径数怎么算?对于每一个连通块, C ( n , 2 ) C(n,2) C(n,2)。但是我们要加上单个点。于是就成为了 ∑ n ( n + 1 ) 2 \sum\frac{n(n+1)}{2} 2n(n+1)。(n为连通块的大小)
求出来更简单的问题 h ( x ) h(x) h(x)后,使用莫反即可得出原问题的答案。
h ( x ) = ∑ x ∣ d a n s ( d ) h(x)=\sum_{x|d}ans(d) h(x)=xdans(d)
a n s ( x ) = ∑ x ∣ d μ ( d x ) h ( d ) ans(x)=\sum_{x|d}\mu (\frac{d}{x})h(d) ans(x)=xdμ(xd)h(d)

a n s ( x ) = ∑ i = 1 ⌊ m a x x ⌋ μ ( i ) h ( x i ) ans(x)=\sum_{i=1}^{\lfloor\frac{max}{x}\rfloor}\mu(i)h(xi) ans(x)=i=1xmaxμ(i)h(xi)

//
// Created by artist on 2021/9/18.
//


#include<bits/stdc++.h>

using namespace std;
typedef long long ll;
#define mkp make_pair
#define fi first
#define se second
#define pb push_back
#define all(x) x.begin(),x.end()
#define DB1(args...) do { cout << #args << " : "; dbg(args); } while (0)
#define endl '\n'
#define pii pair<int,int>

void dbg() { std::cout << "  #\n"; }

template<typename T, typename...Args>
void dbg(T a, Args...args) {
    std::cout << a << ' ';
    dbg(args...);
}

void io() { ios::sync_with_stdio(0), cin.tie(0), cout.tie(0); }

const int maxn = 200043;

int d[maxn];

void sieve(){
    vector<int> pr;
    for(int i=2;i<maxn;++i){
        if(!d[i]) d[i]=i,pr.pb(i);
        for(auto x:pr) {
            if(x>d[i]||x*1ll*i>=maxn) break;
            d[i*x] = x;
        }
    }
}

int mobius(int x){
    int lst = -1;
    int res = 1;
    while(x!=1){
        if(lst==d[x]) res=0;
        else res = -res;
        lst = d[x];
        x/=d[x];
    }
    return res;
}

int mb[maxn];

vector<int> need_bfs[maxn];
int used[maxn];
vector<int> g[maxn];
int a[maxn];
int cc = 0;
int q[maxn];
int hd,tl;
int good[maxn];

int bfs(int x) {
    hd = 0,tl = 0;
    q[tl++] = x;
    used[x] = cc;
    while(hd<tl) {
        int z=q[hd++];
        for(auto y:g[z]) {
            if(good[a[y]]==cc&&used[y]<cc) {
                used[y] = cc;
                q[tl++] = y;
            }
        }
    }
    return tl;
}

ll ans1[maxn];
ll ans2[maxn];

signed main() {
    //io();
    sieve();
    for(int i=1;i<maxn;++i) mb[i] = mobius(i);
    int n;cin>>n;
    for(int i=0;i<n;++i) cin>>a[i];
    for(int i=0;i<n-1;++i) {
        int x,y;cin>>x>>y;
        --x,--y;
        g[x].pb(y);
        g[y].pb(x);
    }
    for(int i=0;i<n;++i) need_bfs[a[i]].pb(i);
    for(int i=200000;i>=1;--i) {
        cc++;
        for(int j=i;j<=200000;j+=i)
            good[j] = cc;
        for(int j=i;j<=200000;j+=i)
            for(auto x:need_bfs[j]) {
                if(used[x]==cc) continue;
                int z = bfs(x);
                ans1[i] += z*1ll*(z+1)/2;
            }
        for(int j=i,k=1;j<=200000;j+=i,k++)
            ans2[i] += mb[k] * ans1[j];
    }
    for(int i=1;i<=200000;++i)
        if(ans2[i])
            cout<<i<<" "<<ans2[i]<<endl;
}

P1829 [国家集训队]Crash的数字表格 / JZPTAB

题意

∑ i = 1 n ∑ j = 1 m l c m ( i , j ) \sum_{i=1}^n\sum_{j=1}^mlcm(i,j) i=1nj=1mlcm(i,j)。答案模20211009,n,m<=1e7。

推导

其实就是有两次d的枚举。单开一个函数提出来(简化问题)考虑最后再合并进去就好。

∑ i = 1 n ∑ j = 1 m l c m ( i , j ) \sum_{i=1}^n\sum_{j=1}^mlcm(i,j) i=1nj=1mlcm(i,j)

= ∑ i = 1 n ∑ j = 1 m i j gcd ⁡ ( i , j ) =\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{\gcd(i,j)} =i=1nj=1mgcd(i,j)ij

= ∑ d = 1 ∑ i = 1 n ∑ j = 1 m i j d [ gcd ⁡ ( i , j ) = d ] =\sum_{d=1}\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{d}[\gcd(i,j)=d] =d=1i=1nj=1mdij[gcd(i,j)=d]

= ∑ d = 1 1 d ∑ i = 1 n ∑ j = 1 m i j [ gcd ⁡ ( i , j ) = d ] =\sum_{d=1}\frac{1}{d}\sum_{i=1}^n\sum_{j=1}^m ij[\gcd(i,j)=d] =d=1d1i=1nj=1mij[gcd(i,j)=d]

= ∑ d = 1 1 d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ d 2 i j [ gcd ⁡ ( i , j ) = 1 ] =\sum_{d=1}\frac{1}{d}\sum_{i=1}^{\lfloor{\frac{n}{d}}\rfloor}\sum_{j=1}^{\lfloor{\frac{m}{d}}\rfloor}d^2ij[\gcd(i,j)=1] =d=1d1i=1dnj=1dmd2ij[gcd(i,j)=1]

= ∑ d = 1 d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i j [ gcd ⁡ ( i , j ) = 1 ] =\sum_{d=1}d\sum_{i=1}^{\lfloor{\frac{n}{d}}\rfloor}\sum_{j=1}^{\lfloor{\frac{m}{d}}\rfloor}ij[\gcd(i,j)=1] =d=1di=1dnj=1dmij[gcd(i,j)=1]

g ( n , m ) = ∑ i = 1 n ∑ j = 1 m i j [ gcd ⁡ ( i , j ) = 1 ] g(n,m)=\sum_{i=1}^n\sum_{j=1}^mij[\gcd(i,j)=1] g(n,m)=i=1nj=1mij[gcd(i,j)=1]

单考虑 g ( n , m ) g(n,m) g(n,m)

g ( n , m ) = ∑ i = 1 n ∑ j = 1 m i j ∑ d ∣ gcd ⁡ ( i , j ) μ ( d ) g(n,m)=\sum_{i=1}^n\sum_{j=1}^mij\sum_{d|\gcd(i,j)}\mu(d) g(n,m)=i=1nj=1mijdgcd(i,j)μ(d)

= ∑ d = 1 d 2 μ ( d ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i j =\sum_{d=1}d^2\mu(d)\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor{\frac{m}{d}}\rfloor}ij =d=1d2μ(d)i=1dnj=1dmij

注意到 ∑ i = 1 n ∑ j = 1 m i j = ( n + 1 ) n 2 × ( m + 1 ) m 2 \sum_{i=1}^n\sum_{j=1}^mij=\frac{(n+1)n}{2}\times \frac{(m+1)m}{2} i=1nj=1mij=2(n+1)n×2(m+1)m,可以 O ( 1 ) O(1) O(1)内求出。

因此 g ( n , m ) g(n,m) g(n,m)可以分块求解。时间复杂度 O ( N ) O(\sqrt{N}) O(N )

回到原式,发现也可以用分块求解。。。,于是答案就出来惹。

代码

//
// Created by acm on 2021/5/27.
//

#include<bits/stdc++.h>

using namespace std;
#define int long long int
#define mp(a, b) make_pair(a,b)
#define vi vector<int>
#define mii map<int,int>
#define mpi map<pair<int,int>,int>
#define vp vector<pair<int,int> >
#define pb(a) push_back(a)
#define fr(i, n) for(i=0;i<n;i++)
#define rep(i, a, n) for(i=a;i<n;i++)
#define F first
#define S second
#define endl "\n"
#define Endl "\n"
#define fast std::ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define mod 1000000007
#define dom 20101009
#define sl(a) (int)a.length()
#define sz(a) (int)a.size()
#define all(a) a.begin(),a.end()
#define pii pair<int,int>
#define mini 2000000000000000000
#define time_taken 1.0 * clock() / CLOCKS_PER_SEC

//mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
//const long double pi = acos(-1);
//mt19937_64 mt(chrono::steady_clock::now().time_since_epoch().count());
//primes for hashing 937, 1013
template<typename T, typename U>
static inline void amin(T &x, U y) {
    if (y < x) x = y;
}

template<typename T, typename U>
static inline void amax(T &x, U y) {
    if (x < y) x = y;
}

inline int read() {
    int x = 0, f = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9') {
        if (ch == '-') f = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9') {
        x = x * 10 + ch - '0';
        ch = getchar();
    }
    return x * f;
}

inline int qpow(int x, int y) {
    int res(1);
    while (y) {
        if (y & 1) res = 1ll * res * x % dom;
        x = 1ll * x * x % dom;
        y >>= 1;
    }
    return res;
}
const int maxn = 1e7+4;
int mu[maxn],sum[maxn],pri[maxn],cnt;
bool vis[maxn];

void getmu(int mx){
    mu[1]=1;
    for(int i=2;i<=mx;++i){
        if(!vis[i]) pri[++cnt]=i,mu[i]=-1;
        for(int j=1;j<=cnt&&pri[j]*i<=mx;++j){
            vis[i*pri[j]] = true;
            if(i%pri[j]==0){
                mu[i*pri[j]] = 0;
                break;
            }
            mu[pri[j]*i]=-mu[i];
        }
    }
    for(int i=1;i<=mx;++i) sum[i] = sum[i-1]+i*i%dom*(mu[i]+dom)%dom, sum[i]%=dom;
}

int solve3(int n,int m){
    return (n+1)*n/2%dom*((m+1)*m/2%dom)%dom;
}

int solve2(int n,int m){
    int ans = 0;
    for(int d=1,j;d<=min(n,m);d=j+1){
        j=min(n/(n/d),m/(m/d));
        ans += (sum[j]-sum[d-1]+dom)%dom*solve3(n/d,m/d)%dom;
        ans%=dom;
    }
    return ans;
}

int solve(int n,int m){
    int ans = 0;
    for(int d=1,j;d<=min(n,m);d=j+1){
        j=min(n/(n/d),m/(m/d));
        ans += (d+j)*(j-d+1)/2%dom*solve2(n/d,m/d)%dom;
        ans %= dom;
    }
    return ans;
}

signed main() {
    fast;
    int n,m;cin>>n>>m;
    getmu(max(n,m));
    cout<<solve(n,m)<<endl;
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值