[ACM]【莫比乌斯反演/杜教筛/数论分块】牛牛的最大公约数

牛牛的最大公约数

传送门
题意:一个区间内选N个数(可以重复选),求这N个数的gcd==K的选法数。
在这里插入图片描述
这周写了三篇论文猝死预备的我终于来填坑啦(lll¬ω¬)

思路:

首先将要求的用数学公式表达出来: ∑ i 1 = l r . . . ∑ i n = l r [ g c d ( i 1 , . . . , i n ) = k ] \sum_{i_1=l}^{r}...\sum_{i_n=l}^{r}[gcd(i_1,...,i_n)=k] i1=lr...in=lr[gcd(i1,...,in)=k]

等价于
∑ i 1 = ⌈ l k ⌉ ⌊ r k ⌋ . . . ∑ i n = ⌈ l k ⌉ ⌊ r k ⌋ [ g c d ( i 1 , . . . , i n ) = 1 ] \sum_{i_1=\lceil\frac{l}{k}\rceil}^{\lfloor\frac{r}{k}\rfloor}...\sum_{i_n=\lceil\frac{l}{k}\rceil}^{\lfloor\frac{r}{k}\rfloor}[gcd(i_1,...,i_n)=1] i1=klkr...in=klkr[gcd(i1,...,in)=1]

莫比乌斯函数的性质
[ g c d ( i , j ) = 1 ]    ⟺    ∑ d ∣ g c d ( i , j ) μ ( d ) [gcd(i,j)=1]\iff\sum_{d|gcd(i,j)}\mu(d) [gcd(i,j)=1]dgcd(i,j)μ(d)
原式等价于
∑ i 1 = ⌈ l k ⌉ ⌊ r k ⌋ . . . ∑ i n = ⌈ l k ⌉ ⌊ r k ⌋ ∑ d ∣ g c d ( i 1 , . . . , i n ) μ ( d ) \sum_{i_1=\lceil\frac{l}{k}\rceil}^{\lfloor\frac{r}{k}\rfloor}...\sum_{i_n=\lceil\frac{l}{k}\rceil}^{\lfloor\frac{r}{k}\rfloor}\sum_{d|gcd(i_1,...,i_n)}\mu(d) i1=klkr...in=klkrdgcd(i1,...,in)μ(d)

为了清晰,以新的 l l l表示原 ⌈ l k ⌉ \lceil\frac{l}{k}\rceil kl,新 r r r表示原 ⌊ r k ⌋ \lfloor\frac{r}{k}\rfloor kr:
∑ i 1 = l r . . . ∑ i n = l r ∑ d ∣ g c d ( i 1 , . . . , i n ) μ ( d ) \sum_{i_1=l}^{r}...\sum_{i_n=l}^{r}\sum_{d|gcd(i_1,...,i_n)}\mu(d) i1=lr...in=lrdgcd(i1,...,in)μ(d)

变换枚举顺序,原式等价于
∑ d = 1 r μ ( d ) ∑ i 1 = l r . . . ∑ i n = l r [ d ∣ g c d ( i 1 , . . . i n ) ] \sum_{d=1}^{r}\mu(d)\sum_{i_1=l}^{r}...\sum_{i_n=l}^{r}[d|gcd(i_1,...i_n)] d=1rμ(d)i1=lr...in=lr[dgcd(i1,...in)]

拆开后面的枚举项,等价于
∑ d = 1 r μ ( d ) ∑ i 1 = l r [ d ∣ i 1 ] . . . ∑ i n = l r [ d ∣ i n ] \sum_{d=1}^{r}\mu(d)\sum_{i_1=l}^{r}[d|i_1]...\sum_{i_n=l}^{r}[d|i_n] d=1rμ(d)i1=lr[di1]...in=lr[din]

l l l r r r之间能够被 d d d整除的数字有 ⌊ r d ⌋ − ⌊ l − 1 d ⌋ \lfloor\frac{r}{d}\rfloor-\lfloor\frac{l-1}{d}\rfloor drdl1个。
因此,原式等价于
∑ d = 1 r μ ( d ) ( ⌊ r d ⌋ − ⌊ l − 1 d ⌋ ) n \sum_{d=1}^{r}\mu(d)(\lfloor\frac{r}{d}\rfloor-\lfloor\frac{l-1}{d}\rfloor)^n d=1rμ(d)(drdl1)n

( ⌊ r d ⌋ − ⌊ l − 1 d ⌋ ) n (\lfloor\frac{r}{d}\rfloor-\lfloor\frac{l-1}{d}\rfloor)^n (drdl1)n可以借由数论分块求出。
∑ d = 1 r μ ( d ) \sum_{d=1}^{r}\mu(d) d=1rμ(d)前缀和可以借由杜教筛求出。

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n,k,l,r;
const ll maxn=1e7;//预处理量
const ll mod=1e9+7;
map<ll,ll> mp_mu;
ll vis[maxn+2],p[maxn],mu[maxn+2],tot=0,mu_sum[maxn+2];
void init(){//预处理
	mu[1]=1;
	for(int i=2;i<=maxn;i++){
		if(!vis[i]) p[++tot]=i,mu[i]=-1;
		for(int j=1;j<=tot&&i*p[j]<=maxn;j++){
			vis[i*p[j]]=1;
			if(i%p[j]==0){
				mu[i*p[j]]=0;
				break;
			}
			mu[i*p[j]]=-mu[i];
		}
	}
}
ll qpow(ll a,ll n){
	ll ans=1;
	while(n){
		if(n&1) ans=(ans*a)%mod;
		a=(a*a)%mod;
		n>>=1;
	}
	return ans;
}
ll getMu(ll x){
	if(x<=maxn) return mu_sum[x];
	if(mp_mu.find(x)!=mp_mu.end()) return mp_mu[x];
	ll res=1ll;
	for(ll i=2,j;i<=x;i=j+1){
		j=x/(x/i);
		res-=getMu(x/i)*(j-i+1);
	}
	return mp_mu[x]=res;
}
ll du(ll L,ll R){//杜教筛
	ll res=0;
	for(int i=1,j;i<=R;i=j+1){
		if(L-1<i) j=R/(R/i);//防止除零意外
		else j=min(R/(R/i),(L-1)/((L-1)/i));//取小的那个:毕竟是分块嘛
		ll x=getMu(j)-getMu(i-1);
		ll y=qpow(R/i-(L-1)/i,n);
		res=(res+(x*y)%mod)%mod;
	}
	res=(res+mod)%mod;//要是正才行
	return res;
} 
int main(){
	int L,R;
	init();
	scanf("%lld%lld%d%d",&n,&k,&L,&R);
	l=(L+k-1)/k;r=R/k;
	for(int i=1;i<=min(r,maxn);i++) mu_sum[i]=mu_sum[i-1]+mu[i];
	ll ans=du(l,r);
	printf("%lld\n",ans);
}

涉及知识

数论分块

理论:

数论分块用于快速处理形如 ∑ i n ⌊ n i ⌋ \sum_{i}^{n}\lfloor\frac{n}{i}\rfloor inin的式子。复杂度为 O ( n ) O(\sqrt{n}) O(n )(大概)。
通过观察可以发现,对于同一个 n n n ⌊ n i ⌋ \lfloor\frac{n}{i}\rfloor in的值随着 i i i呈现块状分布。对于任意一个 i ( i ≤ n ) i( i\leq n) i(in),能找到一个最大的 j ( i ≤ j ≤ n ) j(i\leq j\leq n) j(ijn),使得 ⌊ n i ⌋ = ⌊ n j ⌋ \lfloor\frac{n}{i}\rfloor=\lfloor\frac{n}{j}\rfloor in=jn,在这之间的 k ( i ≤ k ≤ j ) k(i\leq k\leq j) k(ikj)都有 ⌊ n k ⌋ = ⌊ n i ⌋ \lfloor\frac{n}{k}\rfloor=\lfloor\frac{n}{i}\rfloor kn=in
而这个 j = ⌊ n ⌊ n i ⌋ ⌋ j=\lfloor\frac{n}{\lfloor\frac{n}{i}\rfloor}\rfloor j=inn
证明:
⌊ n i ⌋ ≤ n i \lfloor\frac{n}{i}\rfloor\leq \frac{n}{i} inin
   ⟹    ⌊ n ⌊ n i ⌋ ⌋ ≥ ⌊ n n i ⌋ = ⌊ i ⌋ = i \implies\lfloor\frac{n}{\lfloor\frac{n}{i}\rfloor}\rfloor\geq\lfloor\frac{n}{\frac{n}{i}}\rfloor=\lfloor i\rfloor=i inninn=i=i
   ⟹    j ≥ i \implies j\geq i ji
因此,每次以 [ i , j ] [i,j] [i,j]为一块,分块求和即可。

实现:

int ans=0;
for(int i=1,j;i<=n;i=j+1){
	j=n/(n/i);
	ans+=(j-(i-1))*(n/i);
}

Mobius函数(莫比乌斯)

理论:

定义:

μ ( d ) = { 1 d = 1 ( − 1 ) r d = p 1 . . . p r , p 1 , . . . , p r 是两两不同的素数 0 其他,即 d 有大于 1 的平方因数 \mu(d)=\begin{cases} 1&d=1\\{(-1)^r}&{d=p_1...p_r,p_1,...,p_r}\text{是两两不同的素数}\\0&{\text{其他,即}d\text{有大于}1\text{的平方因数}}\end{cases} μ(d)=1(1)r0d=1d=p1...pr,p1,...,pr是两两不同的素数其他,即d有大于1的平方因数

性质:

(证明见课本)
(1)积性函数( ( d 1 , d 2 ) = 1 (d_1,d_2)=1 (d1,d2)=1 μ ( d 1 d 2 ) = μ ( d 1 ) μ ( d 2 ) \mu(d_1d_2)=\mu(d_1)\mu(d_2) μ(d1d2)=μ(d1)μ(d2)
(2) ∑ d ∣ n μ ( d ) = [ 1 n ] = { 1 n = 1 0 n ≠ 0 \sum_{d|n}\mu(d)=[\frac{1}{n}]=\begin{cases} 1&{n=1}\\0&{n \neq 0}\end{cases} dnμ(d)=[n1]={10n=1n=0
(3) [ g c d ( i , j ) = 1 ]    ⟺    ∑ d ∣ g c d ( i , j ) μ ( d ) [gcd(i,j)=1]\iff\sum_{d|gcd(i,j)}\mu(d) [gcd(i,j)=1]dgcd(i,j)μ(d)
*(3)的证明:通过Dirichlet卷积。

筛法:

线性筛

void getMu(){
	mu[1]=1;
	for(int i=2;i<=n;i++){
		if(!vis[i]) p[++tot]=i,mu[i]=-1;
		for(int j=1;j<=tot&&i*p[j]<=n;j++){
			vis[i*p[j]]=1;
			if(i%p[j]==0){
				mu[i*p[j]]=0;
				break;
			}
			mu[i*p[j]]=-mu[i];
		}
	}
}
前缀和筛法:

杜教筛 和 Min_25筛(原理都是因为 μ \mu μ是积性函数)

Dirichlet卷积(狄利克雷)

两个数论函数的Dirichlet卷积是 ( f ∗ g ) ( n ) = ∑ d ∣ n f ( d ) g ( n d ) (f\ast g)(n)=\sum_{d|n}f(d)g(\frac{n}{d}) (fg)(n)=dnf(d)g(dn)。满足交换律和结合律。
ε = μ ∗ 1    ⟺    ε ( n ) = ∑ d ∣ n μ ( d ) \varepsilon=\mu\ast 1\iff \varepsilon(n)=\sum_{d|n}\mu(d) ε=μ1ε(n)=dnμ(d)
注: ε ( n ) = [ n = 1 ] \varepsilon(n)=[n=1] ε(n)=[n=1]为单位函数

杜教筛

被用来处理数论函数的前缀和问题。低于线性时间复杂度。
主要思路:通过寻找递推关系的方法来压缩计算步骤。

理论:

对于数论函数 f ( x ) f(x) f(x),要求 S ( x ) = ∑ x = 1 n f ( x ) S(x)=\sum_{x=1}^{n} f(x) S(x)=x=1nf(x),构造 S ( n ) S(n) S(n)关于 S ( ⌊ n i ⌋ ) S(\lfloor\frac{n}{i}\rfloor) S(in)的递推式。
对任意一个数论函数 g g g ∑ i = 1 n ∑ d ∣ i f ( d ) g ( i d ) = ∑ i = 1 n g ( i ) S ( ⌊ n i ⌋ ) \sum_{i=1}^n\sum_{d|i}f(d)g(\frac{i}{d})=\sum_{i=1}^{n}g(i)S(\lfloor\frac{n}{i}\rfloor) i=1ndif(d)g(di)=i=1ng(i)S(in)
   ⟺    ∑ i = 1 n ( f ∗ g ) ( i ) = ∑ i = 1 n g ( i ) S ( ⌊ n i ⌋ ) \iff\sum_{i=1}^{n}(f\ast g)(i)=\sum_{i=1}^{n}g(i)S(\lfloor\frac{n}{i}\rfloor) i=1n(fg)(i)=i=1ng(i)S(in)
因此有 g ( 1 ) S ( n ) = ∑ i = 1 n ( f ∗ g ) ( i ) − ∑ i = 2 n g ( i ) S ( ⌊ n i ⌋ ) g(1)S(n)=\sum_{i=1}^{n}(f\ast g)(i)-\sum_{i=2}^{n}g(i)S(\lfloor\frac{n}{i}\rfloor) g(1)S(n)=i=1n(fg)(i)i=2ng(i)S(in)
如果我们可以快速求出 ∑ i = 1 n ( f ∗ g ) ( i ) \sum_{i=1}^{n}(f\ast g)(i) i=1n(fg)(i),并使用数论分块递归地求出 ∑ i = 2 n g ( i ) S ( ⌊ n i ⌋ ) \sum_{i=2}^{n}g(i)S(\lfloor\frac{n}{i}\rfloor) i=2ng(i)S(in),那么就能得出 S ( n ) S(n) S(n)
证明:
∑ i = 1 n ∑ d ∣ i f ( d ) g ( i d ) \sum_{i=1}^{n}\sum_{d|i}f(d)g(\frac{i}{d}) i=1ndif(d)g(di)
= ∑ i = 1 n ∑ d ∣ i g ( d ) f ( i d ) =\sum_{i=1}^{n}\sum_{d|i}g(d)f(\frac{i}{d}) =i=1ndig(d)f(di)(交换律)
= ∑ d = 1 n ∑ i d = 1 ⌊ n i ⌋ g ( d ) f ( ⌊ i d ⌋ ) =\sum_{d=1}^n\sum_{\frac{i}{d}=1}^{\lfloor\frac{n}{i}\rfloor} g(d)f(\lfloor\frac{i}{d}\rfloor) =d=1ndi=1ing(d)f(di)(意识到原式是对于所有 i ≤ n i\leq n in的贡献,根据这个变换枚举顺序)
= ∑ i = 1 n ∑ j = 1 ⌊ n i ⌋ g ( i ) f ( j ) =\sum_{i=1}^n\sum_{j=1}^{\lfloor\frac{n}{i}\rfloor} g(i)f(j) =i=1nj=1ing(i)f(j)(分别用新的 i i i j j j代替 d d d i d \frac{i}{d} di

实现:

μ \mu μ的前缀和。
ε = μ ∗ 1    ⟺    ε ( n ) = ∑ d ∣ n μ ( d ) \varepsilon=\mu\ast 1\iff \varepsilon(n)=\sum_{d|n}\mu(d) ε=μ1ε(n)=dnμ(d)可知,设 μ \mu μ的前缀和为 S ( n ) S(n) S(n),那么
S ( n ) = ∑ i = 1 n ε ( i ) − ∑ i = 2 n S ( ⌊ n i ⌋ ) S(n)=\sum_{i=1}^{n}\varepsilon(i)-\sum_{i=2}^{n}S(\lfloor\frac{n}{i}\rfloor) S(n)=i=1nε(i)i=2nS(in)
= 1 − ∑ i = 2 n S ( ⌊ n i ⌋ ) =1-\sum_{i=2}^{n}S(\lfloor\frac{n}{i}\rfloor) =1i=2nS(in)
⌊ n i ⌋ \lfloor\frac{n}{i}\rfloor in最多只有 O ( n ) O(\sqrt n) O(n )种取值,用数论分块寻找。
直接计算时间复杂度 O ( n 3 4 ) O(n^{\frac{3}{4}}) O(n43),先用线性筛预处理前 n 2 3 n^{\frac{2}{3}} n32,剩余部分时间复杂度为 O ( n 2 3 ) O(n^{\frac{2}{3}}) O(n32)

ll get_large_mu(ll x){
	if(x<n) return sum_mu[x];//预处理(线性筛)计算的
	if(mp_mu.find(x)!=mp_mu.end()) return mp_mu[x];//get_large的时候计算过的
	ll res=1ll;
	for(ll i=2,j;i<=x;i=j+1){//从2开始
		j=x/(x/i);
		res-=get_large_mu(x/i)*(j-(i-1));//数论分块,递归调用
	}
	return mp_mu[x]=res;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值