- 创建 maven 工程 只加 spark-streaming 这个包就可以
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.0.0</version>
</dependency>
- 示例代码
import java.util.Arrays;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import scala.Tuple2;
public class WordCountOnLine {
public static <U> void main(String[] args) {
/**
* 第一步:配置SparkConf,
* 1. 因为 Spark Streaming 应用程序至少有一条线程用于不断的循环结束数据,并且至少有一条线程用于处理
* 接收的数据(否则的话无线程用于处理数据,随着时间的推移,内存和磁盘都会不堪重负)
* 2. 对于集群而已,每个 Executor 一般肯定不止一个线程,那对于处理 Spark Streaming应用程序而言,每个 Executor 一般分配多少Core
* 比较合适?根据我们过去的经验,5个左右的 Core 是最佳的(一个段子分配为基数 Core 表现最佳,)
*/
// SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("sparkStreaming");
SparkConf conf = new SparkConf().setMaster("spark://hadoop1:7077").setAppName("sparkStreaming");
/**
* 第二步:创建 SparkStreamingContext,
* 1.这个 SparkStreaming 应用程序所有功能的起始点和程序调度的核心
* SparkStreamingContext 的构建可以基于 SparkConf参数,也可基于持久化的 SaprkStreamingContext的内容来回复过来
* (典型的场景是 Driver 奔溃后重新启动,由于 Spark Streaming 具有连续 7*24 小时不间断运行的特征,所有需要在 Driver 重新启动后继续上一次的状态,
* 此时的状态恢复需要基于曾经的 Checkpoint)
* 2.在一个Spark Streaming 应用程序中可以创建若干个 SaprkStreamingContext对象,使用下一个 SaprkStreamingContext
* 之前需要把前面正在运行的 SparkStreamingContext 对象关闭掉,由此,我们获得一个重大的启发 SparkStreaming框架也只是Spark Core上的一个应用程序而言
* 只不过 Spark Streaming 框架要运行的话需要Spark工程师写业务逻辑处理代码;
*/
JavaStreamingContext jsc = new JavaStreamingContext